Область применения биполярных транзисторов > Как создать музыку?
Музыка: как это делается    

Область применения биполярных транзисторов

Область применения биполярных транзисторов

0a9e6d14 Источник: Фото холодной штамповки металла.

Виды транзисторов и их применение

Слово «транзистор» образованно из двух слов: transfer и resistor. Первое слово переводится с английского как «передача», второе — «сопротивление». Таким образом, транзистор — это особого рода сопротивление, которое регулируется напряжением между базой и эмиттером (током базы) у биполярных транзисторов, и напряжением между затвором и истоком у полевых транзисторов.

Изначально названий для этого полупроводникового прибора предлагалось несколько: полупроводниковый триод, кристаллический триод, лотатрон, но в результате остановились именно на названии «транзистор», предложенном Джоном Пирсом, — американским инженером и писателем-фантастом, другом Уильяма Шокли.

Для начала окунемся немного в историю, затем рассмотрим некоторые виды транзисторов из распространенных сегодня на рынке электронных компонентов.

Уильям Шокли, Уолтер Браттейн и Джон Бардин, работая комaндой в лабораториях Bell Labs, 16 декабря 1947 года создали первый работоспособный биполярный транзистор, который был продемонстрирован учеными официально и публично 23 декабря того же года. Это был точечный транзистор.

Спустя почти два с половиной года, появился первый германиевый плоскостной транзистор, затем сплавной, электрохимический, диффузионный меза-транзистор, и наконец, в 1958 году Texas Instruments выпустила первый кремниевый транзистор, затем, в 1959 году Жаном Эрни был создан первый планарный кремниевый транзистор, в итоге германий был вытеснен кремнием, а планарная технология заняла почетное место главной технологии производства транзисторов.

Справедливости ради отметим, что в 1956 году Уильям Шокли, Джон Бардин и Уолтер Браттейн получили Нобелевскую премию по физике «за исследования полупроводников и открытие транзисторного эффекта».

Что касается полевых транзисторов, то первые патентные заявки подавались с середины 20-х годов 20 века, например в Германии физик Юлий Эдгар Лилиенфельд в 1928 году запатентовал принцип работы полевых транзисторов. Однако, непосредственно полевой транзистор был запатентован впервые в 1934 году немецким физиком Оскаром Хайлом.

Работа полевого транзистора в основе своей использует электростатический эффект поля, физически это проще, потому и сама идея полевых транзисторов появилась раньше, чем идея биполярных транзисторов. Изготовлен же первый полевой транзистор был впервые в 1960 году. В итоге, ближе к 90-м годам 20 века, МОП-технология (технология полевых транзисторов «металл-оксид-полупроводник») стала доминировать во многих отраслях, включая IT-сферу.

В большинстве применений транзисторы заменили собой вакуумные лампы, свершилась настоящая кремниевая революция в создании интегральных микросхем. Так, сегодня в аналоговой технике чаще используют биполярные транзисторы, а в цифровой технике — преимущественно полевые.

Устройство и принцип действия полевых и биполярных транзисторов — это темы отдельных статей, поэтому останавливаться на данных тонкостях не будем, а рассмотрим предмет с чисто пpaктической точки зрения на конкретных примерах.

Как вы уже знаете, по технологии изготовления транзисторы подразделяются на два типа: полевые и биполярные. Биполярные в свою очередь делятся по проводимости на n-p-n – транзисторы обратной проводимости, и p-n-p – транзисторы прямой проводимости. Полевые транзисторы бывают, соответственно, с каналом n-типа и p-типа. Затвор полевого транзистора может быть изолированным (IGBT-транзисторы) или в виде p-n-перехода. IGBT-транзисторы бывают со встроенным каналом или с индуцированным каналом.

Области применения транзисторов определяются их хаpaктеристиками, а работать транзисторы могут в двух режимах: в ключевом или в усилительном. В первом случае транзистор в процессе работы или полностью открыт или полностью закрыт, что позволяет управлять питанием значительных нагрузок, используя малый ток для управления. А в усилительном, или по-другому — в динамическом режиме, используется свойство транзистора изменять выходной сигнал при малом изменении входного, управляющего сигнала. Далее рассмотрим примеры различных транзисторов.

2N3055 – биполярный n-p-n-транзистор в корпусе ТО-3. Популярен в качестве элемента выходных каскадов высококачественных звуковых усилителей, где он работает в динамическом режиме. Как правило, используется совместно с комплементарным p-n-p собратом MJ2955. Данный транзистор может работать и в ключевом режиме, например в трaнcформаторных НЧ инверторах 12 на 220 вольт 50 Гц, пара 2n3055 управляет двухтактным преобразователем.

Примечательно, что напряжение коллектор-эмиттер для данного транзистора в процессе работы может достигать 70 вольт, а ток 15 ампер. Корпус ТО-3 позволяет удобно закрепить его на радиатор в случае необходимости. Статический коэффициент передачи тока — от 15 до 70, этого достаточно для эффективного управления даже мощными нагрузками, при том, что база транзистора выдерживает ток до 7 ампер. Данный транзистор может работать на частотах до 3 МГц.

КТ315 — легенда среди отечественных биполярных транзисторов малой мощности. Данный транзистор n-p-n – типа впервые увидел свет 1967 году, и по сей день пользуется популярностью в радиолюбительской среде. Комплементарной парой к нему является КТ361. Идеален для динамических и ключевых режимов в схемах малой мощности.

При максимально допустимом напряжении коллектор-эмиттер 60 вольт, этот высокочастотный транзистор способен пропускать через себя ток до 100 мА, а граничная частота у него не менее 250 МГц. Коэффициент передачи тока достигает 350, при том, что ток базы ограничен 50 мА.

Изначально транзистор выпускался только в пластмассовом корпусе KT-13, 7 мм в ширину и 6 мм высотой, но в последнее время можно его встретить и в корпусе ТО-92, например производства ОАО «Интеграл».

КП501 — полевой n-кaнaльный транзистор малой мощности с изолированным затвором. Имеет обогащенный n-канал, сопротивление которого составляет от 10 до 15 Ом, в зависимости от модификации (А,Б,В). Предназначен данный транзистор, как его позиционирует производитель, для использования в аппаратуре связи, в телефонных аппаратах и другой радиоэлектронной аппаратуре.

Этот транзистор можно назвать сигнальным. Небольшой корпус ТО-92, максимальное напряжение сток-исток — до 240 вольт, максимальный ток стока — до 180 мА. Емкость затвора менее 100 пф. Особенно примечательно то, что пороговое напряжение затвора составляет от 1 до 3 вольт, что позволяет реализовать управление с очень-очень малыми затратами. Идеален в качестве преобразователя уровней сигналов.

irf3205 – n-кaнaльный полевой транзистор, изготовленный по технологии HEXFET. Популярен в качестве силового ключа для повышающих высокочастотных инверторов, например автомобильных. Посредством параллельного включения нескольких корпусов представляется возможность построения преобразователей, рассчитанных на значительные токи.

Максимальный ток для одного такого транзистора достигает 75А (ограничение вносит конструкция корпуса ТО-220), а максимальное напряжение сток-исток составляет 55 вольт. Сопротивление канала при этом всего 8 мОм. Емкость затвора в 3250 пф требует применения мощного драйвера для управления на высоких частотах, но сегодня это не является проблемой.

FGA25N120ANTD мощный биполярный транзистор с изолированным затвором (IGBT-транзистор) в корпусе TO-3P. Способен выдержать напряжение сток-исток 1200 вольт, максимальный ток стока составляет 50 ампер. Особенность изготовления современных IGBT-транзисторов такого уровня позволяет отнести их к классу высоковольтных.

Область применения — силовые преобразователи инверторного типа, такие как индукционные нагреватели, сварочные аппараты и другие высокочастотные преобразователи, рассчитанные на питание высоким напряжением. Идеален для мощных мостовых и полумостовых резонансных преобразователей, а также для работы в условиях жесткого переключения, имеется встроенный высокоскоростной диод.

Мы рассмотрели здесь только несколько видов транзисторов, и это лишь мизерная часть из обилия моделей электронных компонентов, представленных на рынке сегодня.

Так или иначе, вы с легкостью сможете подобрать подходящий транзистор для своих целей, благо, документация на них доступна сегодня в сети в виде даташитов, в которых исчерпывающе представлены все хаpaктеристики. Типы корпусов современных транзисторов различны, и для одной и той же модели зачастую доступны как SMD исполнение, так и выводное.

Что такое биполярный транзистор и какие схемы включения существуют

Применение полупроводниковых приборов (ПП) широко распространено в радиоэлектронике. Благодаря этому уменьшились габариты различных устройств. Широкое применение получил биполярный транзистор, благодаря некоторым особенностям его функционал шире, чем у простого полевого транзистора. Чтобы понять, для чего он нужен и в при каких условиях применяется, необходимо рассмотреть его принцип действия, способы подключения и классификацию.

Устройство и принцип действия

Транзистор – электронный полупроводник, состоящий из 3 электродов, одним из которых является управляющий. Транзистор биполярного типа отличается от полярного наличием 2 типов носителей заряда (отрицательного и положительного).

Отрицательные заряды представляют собой электроны, которые высвобождаются из внешней оболочки кристаллической решетки. Положительный тип заряда, или дырки, образуются на месте высвобожденного электрона.

Устройство биполярного транзистора (БТ) достаточно простое, несмотря на его универсальность. Он состоит из 3 слоев проводникового типа: эмиттера (Э), базы (Б) и коллектора (К).

Эмиттер (от латинского “выпускать”) – тип полупроводникового перехода, основной функцией которого является инжекция зарядов в базу. Коллектор (от латинского “собиратель”) служит для получения зарядов эмиттера. База является управляющим электродом.

Слои эмиттерный и коллекторный почти одинаковые, однако отличаются степенью добавления примесей для улучшения хаpaктеристик ПП. Добавление примесей называется легированием. Для коллекторного слоя (КС) легирование выражено слабо для повышения коллекторного напряжения (Uк). Эмиттерный полупроводниковый слой легируется сильно для того, чтобы повысить обратное допустимое U пробоя и улучшить инжекцию носителей в базовый слой (увеличивается коэффициент передачи по току – Kт). Слой базы легируется слабо для обеспечения большего сопротивления (R).

Переход между базой и эмиттером меньший по площади, чем К-Б. Благодаря разнице в площадях и происходит улучшение Кт. При работе ПП переход К-Б включается со смещением обратного типа для выделения основной доли количества теплоты Q, которое рассеивается и обеспечивает лучшее охлаждение кристалла.

Быстродействие БТ зависит от толщины базового слоя (БС). Эта зависимость является величиной, изменяющейся по обратно пропорциональному соотношению. При меньшей толщине – большее быстродействие. Эта зависимость связана с временем пролета носителей заряда. Однако при этом снижается Uк.

Между эмиттером и К протекает сильный ток, называемый током К (Iк). Между Э и Б протекает ток маленькой величины – ток Б (Iб), который используется для управления. При изменении Iб произойдет изменение Iк.

У транзистора два p-n перехода: Э-Б и К-Б. При активном режиме Э-Б подключается со смещением прямого типа, а подключение К-Б происходит с обратным смещением. Так как переход Э-Б находится в открытом состоянии, то отрицательные заряды (электроны) перетекают в Б. После этого происходит их частичная рекомбинация с дырками. Однако большая часть электронов достигает К-Б из-за малой легитивности и толщины Б.

В БС электроны являются неосновными носителями заряда, и электромагнитное поле помогает им преодолеть переход К-Б. При увеличении Iб произойдет расширение открытия Э-Б и между Э и К пробежит больше электронов. При этом произойдет существенное усиление сигнала низкой амплитуды, т. к. Iк больше, чем Iб.

Для того чтобы проще понять физический смысл работы транзистора биполярного типа, нужно ассоциировать его с наглядным примером. Нужно предположить, что насос для закачки воды является источником питания, водопроводный кран – транзистором, вода – Iк, степень поворота ручки крана – Iб. Для увеличения напора нужно немного повернуть кран – совершить управляющее действие. Исходя из примера можно сделать вывод о простом принципе работы ПП.

Однако при существенном увеличении U на переходе К-Б может произойти ударная ионизация, следствием которой является лавинное размножение заряда. При комбинации с тоннельным эффектом этот процесс дает электрический, а с увеличением времени и тепловой пробой, что выводит ПП из строя. Иногда тепловой пробой наступает без электрического в результате существенного увеличения тока через выход коллектора.

Читать еще:  Наконечник гильза как использовать

Кроме того, при изменении U на К-Б и Э-Б меняется толщина этих слоев, если Б тонкая, то происходит эффект смыкания (его еще называют проколом Б), при котором происходит соединение переходов К-Б и Э-Б. В результате этого явления ПП перестает выполнять свои функции.

Режимы работы

Транзистор биполярного типа может работать в 4 режимах:

Активный режим БТ бывает нормальным (НАР) и инверсным (ИАР).

Нормальный активный режим

При этом режиме на переходе Э-Б протекает U, которое является прямым и называется напряжением Э-Б (Uэ-б). Режим считается оптимальным и используется в большинстве схем. Переход Э осуществляет инжекцию зарядов в базовую область, которые перемещаются к коллектору. Последний ускоряет заряды, создавая эффект усиления.

Инверсный активный режим

В этом режиме переход К-Б открыт. БТ работает в обратном направлении, т. е. из К идет инжекция дырочных носителей заряда, проходящих через Б. Они собираются переходом Э. Свойства ПП к усилению слабые, и редко БТ применяются в этом режиме.

Режим насыщения

При РН оба перехода открыты. При подключении Э-Б и К-Б к внешним источникам в прямом направлении БТ будет работать в РН. Диффузионное электромагнитное поле Э и К переходов ослабляется электрическим полем, которое создается внешними источниками. В результате этого произойдет уменьшение барьерной способности и ограничение диффузной способности основных носителей заряда. Начнется инжекция дырок из Э и К в Б. Этот режим применяется в основном в аналоговой технике, однако в некоторых случаях возможны исключения.

Режим отсечки

При этом режиме БТ закрывается полностью и не способен проводить ток. Однако в БТ присутствуют незначительные потоки неосновных носителей зарядов, создающих тепловые токи с малыми значениями. Применяется этот режим в различных видах защиты от перегрузок и коротких замыканий.

Барьерный режим

База БТ соединяется через резистор с К. В цепь К или Э включается резистор, который задает величину тока (I) через БТ. БР часто применяется в схемах, т. к. позволяет работать БТ на любой частоте и в большем диапазоне температур.

Схемы включения

Для корректного применения и подключения БТ нужно знать их классификацию и тип. Классификация биполярных транзисторов:

  1. Материал изготовления: германий, кремний и арсенидогаллий.
  2. Особенности изготовления.
  3. Рассеиваемая мощность: маломощные (до 0,25 Вт), средние (0,25-1,6 Вт), мощные (выше 1,6 Вт).
  4. Предельная частота: низкочастотные (до 2,7 МГц), среднечастотные (2,7-32 МГц), высокочастотные (32-310 МГц), сверхвысокочастотные (более 310 МГц).
  5. Функциональное назначение.

Функциональное назначение БТ делится на следующие виды:

  1. Усилительные низкочастотные с нормированным и ненормированным коэффициентом шума (НиННКШ).
  2. Усилительные высокочастотные с НиННКШ.
  3. Усилительные сверхвысокочастотные с НиННКШ.
  4. Усилительные мощные высоковольтные.
  5. Генераторные с высокими и сверхвысокими частотами.
  6. Маломощные и мощные высоковольтные переключающие.
  7. Импульсные мощные для работы с высокими значениями U.

Кроме того, существуют такие типы биполярных транзисторов:

Существует 3 схемы включения биполярного транзистора, каждая из которых обладает своими достоинствами и недостатками:

Включение с общей базой (ОБ)

Схема применяется на высоких частотах, позволяя оптимально использовать частотную хаpaктеристику. При подключении одного БТ по схеме с ОЭ, а потом с ОБ его частота работы усилится. Эту схему подключения применяют в усилителях антенного типа. Уровень шумов на высоких частотах снижается.

  1. Оптимальные значения температуры и широкий диапазон частот (f).
  2. Высокое значение Uк.
  1. Низкое усиление по I.
  2. Низкое входное R.

Включение с общим эмиттером (ОЭ)

При подключении по этой схеме происходит усиление по U и I. Схему можно запитать от одного источника. Часто применяется в усилителях мощности (P).

  1. Высокие коэффициенты усиления по I, U, P.
  2. Один источник питания.
  3. Происходит инвертирование выходного переменного U относительно входного.

Обладает существенными недостатками: наименьшая температурная стабильность и частотные хаpaктеристики хуже, чем при подключении с ОБ.

Включение с общим коллектором (ОК)

Входное U полностью передается обратно на вход, и Кi аналогичен при подключении с ОЭ, но по U он низкий.

Этот тип включения применяют для согласования каскадов, выполненных на транзисторах, или при источнике входного сигнала, который имеет высокое выходное R (микрофон конденсаторного типа или звукосниматель). К достоинствам можно отнести следующие: большое значение входного и малого выходного R. Недостатком является низкий коэффициент усиления по U.

Основные хаpaктеристики биполярных транзисторов

Основные хаpaктеристики БТ:

  1. Коэффициент усиления по I.
  2. Входное и выходное R.
  3. Обратный Iк-э.
  4. Время включения.
  5. Частота передачи Iб.
  6. Обратный Iк.
  7. Максимальное значение I.

Сферы применения

Применение биполярных транзисторов широко распространено во всех областях человеческой деятельности. Основное применение устройства получили в приборах для усиления, генерации электрических сигналов, а также выполняют роль коммутируемого элемента. Их применяют в различных усилителях мощности, в обыкновенных и импульсных блоках питания с возможностью регулирования значений U и I, в компьютерной технике.

Кроме того, их часто используют для построения различной защиты потребителей от перегрузок, скачков U, короткого замыкания. Широкое применение получили в горнодобывающей, металлургической сферах.

Биполярные транзисторы (стр. 1 из 2)

ТЕМА 4. БИПОЛЯРНЫЕ ТРАНЗИСТОРЫ

4.1 Устройство и принцип действия

Биполярный транзистор – это полупроводниковый прибор, состоящий из трех областей с чередующимися типами электропроводности и пригодный для усиления мощности.

Выпускаемые в настоящее время биполярные транзисторы можно классифицировать по следующим признакам:

— по материалу: германиевые и кремниевые;

— по виду проводимости областей: типа р-n-р и n-p-n;

— по мощности: малой (Рмах £ 0,3Вт), средней (Рмах £ 1,5Вт) и большой мощности (Рмах > 1,5Вт);

— по частоте: низкочастотные, среднечастотные, высокочастотные и СВЧ.

В биполярных транзисторах ток определяется движением носителей заряда двух типов: электронов и дырок (или основными и неосновными). Отсюда их название – биполярные.

В настоящее время изготавливаются и применяются исключительно транзисторы с плоскостными р-n- переходами.

Устройство плоскостного биполярного транзистора показано схематично на рис. 4.1.

Он представляет собой пластинку германия или кремния, в которой созданы три области с различной электропроводностью. У транзистора типа n-р-n средняя область имеет дырочную, а крайние области – электронную электропроводность.

Транзисторы типа р-n-р имеют среднюю область с электронной, а крайние области с дырочной электропроводностью.

Средняя область транзистора называется базой, одна крайняя область – эмиттером, другая – коллектором. Таким образом в транзисторе имеются два р-n- перехода: эмиттерный – между эмиттером и базой и коллекторный – между базой и коллектором. Площадь эмиттерного перехода меньше площади коллекторного перехода.

Эмиттером называется область транзистора назначением которой является инжекция носителей заряда в базу. Коллектором называют область, назначением которой является экстpaкция носителей заряда из базы. Базой является область, в которую инжектируются эмиттером неосновные для этой области носители заряда.

Концентрация основных носителей заряда в эмиттере во много раз больше концентрации основных носителей заряда в базе, а их концентрация в коллекторе несколько меньше концентрации в эмиттере. Поэтому проводимость эмиттера на несколько порядков выше проводимости базы, а проводимость коллектора несколько меньше проводимости эмиттера.

От базы, эмиттера и коллектора сделаны выводы. В зависимости от того, какой из выводов является общим для входной и выходной цепей, различают три схемы включения транзистора: с общей базой (ОБ), общим эмиттером (ОЭ), общим коллектором (ОК).

Входная, или управляющая, цепь служит для управления работой транзистора. В выходной, или управляемой, цепи получаются усиленные колебания. Источник усиливаемых колебаний включается во входную цепь, а в выходную включается нагрузка.

Рассмотрим принцип действия транзистора на примере транзистора р-n-р –типа, включенного по схеме с общей базой (рис. 4.2).

Рисунок 4.2 – Принцип действия биполярного транзистора (р-n-р- типа)

Внешние напряжения двух источников питания ЕЭ и Ек подключают к транзистору таким образом, чтобы обеспечивалось смещение эмиттерного перехода П1 в прямом направлении (прямое напряжение), а коллекторного перехода П2 – в обратном направлении (обратное напряжение).

Если к коллекторному переходу приложено обратное напряжение, а цепь эмиттера разомкнута, то в цепи коллектора протекает небольшой обратный ток Iко (единицы микроампер). Этот ток возникает под действием обратного напряжения и создается направленным перемещением неосновных носителей заряда дырок базы и электронов коллектора через коллекторный переход. Обратный ток протекает по цепи: +Ек, база-коллектор, −Ек. Величина обратного тока коллектора не зависит от напряжения на коллекторе, но зависит от температуры полупроводника.

При включении в цепь эмиттера постоянного напряжения ЕЭ в прямом направлении потенциальный барьер эмиттерного перехода понижается. Начинается инжектирование (впрыскивание) дырок в базу.

Внешнее напряжение, приложенное к транзистору, оказывается приложенным в основном к переходам П1 и П2, т.к. они имеют большое сопротивление по сравнению с сопротивлением базовой, эмиттерной и коллекторной областей. Поэтому инжектированные в базу дырки перемещаются в ней посредством диффузии. При этом дырки рекомбинируют с электронами базы. Поскольку концентрация носителей в базе значительно меньше, чем в эмиттере, то рекомбинируют очень немногие дырки. При малой толщине базы почти все дырки будут доходить до коллекторного перехода П2. На место рекомбинированных электронов в базу поступают электроны от источника питания Ек. Дырки, рекомбинировавшие с электронами в базе, создают ток базы IБ.

Под действием обратного напряжения Ек потенциальный барьер коллекторного перехода повышается, толщина перехода П2 увеличивается. Но потенциальный барьер коллекторного перехода не создает препятствия для прохождения через него дырок. Вошедшие в область коллекторного перехода дырки попадают в сильное ускоряющее поле, созданное на переходе коллекторным напряжением, и экстрагируются (втягиваются) коллектором, создавая коллекторный ток Iк. Коллекторный ток протекает по цепи: +Ек, база-коллектор, -Ек.

Таким образом, в транзисторе протекает три тока: ток эмиттера, коллектора и базы.

В проводе, являющемся выводом базы, токи эмиттера и коллектора направлены встречно. Следовательно, ток базы равен разности токов эмиттера и коллектора: IБ = IЭ − IК.

Физические процессы в транзисторе типа n-р-n протекают аналогично процессам в транзисторе типа р-n-р.

Полный ток эмиттера IЭ определяется количеством инжектированных эмиттером основных носителей заряда. Основная часть этих носителей заряда достигая коллектора, создает коллекторный ток Iк. Незначительная часть инжектированных в базу носителей заряда рекомбинируют в базе, создавая ток базы IБ. Следовательно, ток эмиттера разделятся на токи базы и коллектора, т.е. IЭ = IБ + Iк.

Ток эмиттера является входным током, ток коллектора – выходным. Выходной ток составляет часть входного, т.е.

где a- коэффициент передачи тока для схемы ОБ;

Поскольку выходной ток меньше входного, то коэффициент a

Биполярные транзисторы. Виды и хаpaктеристики. Работа и устройство

Биполярные транзисторы это полупроводниковые приборы с тремя электродами, подключенными к трем последовательно находящимся слоям, с различной проводимости. В отличие от других транзисторов, которые переносят один тип заряда, он способен переносить сразу два типа.

Схемы подключения, использующие биполярные транзисторы, зависят от производимой работы и типа проводимости. Проводимость может быть электронной, дырочной.

Разновидности биполярных транзисторов

Биполярные транзисторы разделяют по различным признакам на виды по:
  • Материалу изготовления: кремний или арсенид галлия.
  • Величине частоты: до 3 МГц – низкая, до 30 МГц – средняя, до 300 МГц – высокая, более 300 МГц – сверхвысокая.
  • Наибольшей рассеиваемой мощности: 0-0,3 Вт, 0,3-3 Вт, свыше 3 Вт.
  • Типу прибора: 3 слоя полупроводника с последовательной очередностью типа проводимости.
Читать еще:  Ремонт домкрата 5 тонн ссср
Устройство и работа

Слои транзистора, как внутренний, так и наружный, объединены с встроенными электродами, которые имеют свои названия в виде базы, эмиттера и коллектора.

Особых отличий по видам проводимости у коллектора и эмиттера не наблюдается, однако процент включения примесей у коллектора намного меньше, что позволяет повысить допустимое напряжение на выходе.

Средний слой полупроводника (база) имеет большую величину сопротивления, так как выполнена из слаболегированного материала. Она контактирует с коллектором на значительной площади. Это позволяет повысить теплоотвод, который необходим вследствие выделения тепла от смещения перехода в другую сторону. Хороший контакт базы с коллектором дает возможность легко проходить электронам, которые являются неосновными носителями.

Слои перехода выполнены по одному принципу. Однако биполярные транзисторы считаются несимметричными приборами. При чередовании крайних слоев местами с одной проводимостью нельзя образовать подобные параметры полупроводника.

Схемы подключения транзисторов выполнены таким образом, что могут обеспечить ему как закрытое, так и открытое состояние. При активной работе, когда полупроводник открыт, смещение эмиттера выполнено в прямом направлении. Для полного понимания этой конструкции, нужно подключить напряжение питания по изображенной схеме.

При этом граница на 2-м переходе коллектора закрыта, ток через нее не идет. Пpaктически возникает обратное явление ввиду рядом расположенных переходов, их влияния друг на друга. Так как к эмиттеру подсоединен минусовой полюс батареи, то переход открытого вида дает возможность электронам проходить на базу, в которой осуществляется их рекомбинация с дырками, являющимися главными носителями. Появляется ток базы Iб. Чем выше базовый ток, тем больше выходной ток. В этом заключается принцип действия усилителей.

По базе протекает только диффузионное движение электронов, так как нет работы электрического поля. Из-за малой толщины этого слоя и значительном градиенте частиц, пpaктически все они поступают на коллектор, хотя база имеет большое сопротивление. На переходе имеется электрическое поле, которое способствует переносу и втягивает их. Токи эмиттера и коллектора одинаковые, если не считать малой потери заряда от перераспределения на базе: I э = I б + I к.

Хаpaктеристики
  • Коэффициент усиления тока β = Iк / Iб.
  • Коэффициент усиления напряжения Uэк / Uбэ.
  • Сопротивление на входе.
  • Хаpaктеристика частоты – возможность работы транзистора до определенной частоты, при выходе за границы которой процессы перехода опаздывают за изменением сигнала.
Режимы работ и схемы

Вид схемы влияет на режим действия биполярного транзистора. Сигнал может сниматься и отдаваться в двух местах для разных случаев, а электродов имеется три штуки. Следовательно, что один произвольный электрод должен быть сразу выходом и входом. По такому принципу подключаются все биполярные транзисторы, и имеют три вида схем, которые мы рассмотрим ниже.

Схема с общим коллектором

Сигнал проходит на сопротивление RL, которое также включено в цепь коллектора.

Такая схема подключения дает возможность создать всего лишь усилитель по току. Достоинством такого эмиттерного повторителя можно назвать образование значительного сопротивления на входе. Это дает возможность для согласования каскадов усиления.

Схема с общей базой

Сигнал входа проходит через С1, далее снимается в цепи выхода коллектора, где базовый электрод общий. В итоге образуется усиление напряжения по подобию с общим эмиттером.

В схеме можно найти недостаток в виде малого входного сопротивления. Схема с общей базой используется чаще всего в качестве генератора колебаний.

Схема с общим эмиттером

Чаще всего при использовании биполярных транзисторов выполняют схему с общим эмиттером. Напряжение проходит по сопротивлению нагрузки RL, к эмиттеру питание подключается отрицательным полюсом.

Сигнал переменного значения приходит на базу и эмиттер. В цепи коллектора он становится по значению больше. Главными элементами схемы являются резистор, транзистор и выходная цепь усилителя с источником питания. Дополнительными элементами стали: емкость С1, которая не дает пройти току на вход, сопротивление R1, благодаря которому открывается транзистор.

В цепи коллектора напряжение транзистора и сопротивления равны значению ЭДС: E= Ik R k +Vk e .

Отсюда следует, что малым сигналом Ec определяется правило изменения разности потенциалов в переменное выходное транзисторного преобразователя. Такая схема дает возможность увеличению тока входа во много раз, так же, как напряжению и мощности.

Из недостатков такой схемы можно назвать малое сопротивление на входе (до 1 кОм). Как следствие, возникают проблемы в образовании каскадов. Сопротивление выхода равно от 2 до 20 кОм.

Рассмотренные схемы показывают действие биполярного транзистора. На его работу влияет частота сигнала и перегрев. Для решения этого вопроса применяют дополнительные отдельные меры. Эмиттерное заземление образует на выходе искажения. Для создания надежности схемы, выполняют подключение фильтров, обратных связей и т.д. После таких мер, схема работает лучше, но уменьшается усиление.

Биполярные транзисторы в различных режимах

Транзистор взаимодействует с сигналами разных видов во входной цепи. В основном транзистор применяется в усилителях. Входной переменный сигнал изменяет ток на выходе. В этом случае используются схемы с общим эмиттером или коллектором. В цепи выхода для сигнала необходима нагрузка.

Чаще всего для этого применяют сопротивление, установленное в цепи выхода коллектора. При его правильном выборе, значение напряжения на выходе будет намного больше, чем на входе.

Во время преобразования сигнала импульсов режим сохраняется таким же, как для синусоидальных сигналов. Качество изменения гармоник определяется хаpaктеристиками частоты полупроводников.

Отсечка

Этот режим образуется при снижении напряжения VБЭ до 0,7 вольта. В таком случае переход эмиттера закрывается, и ток на коллекторе отсутствует, так как в базе отсутствуют электроны, и транзистор остается закрытым.

Активный режим

При подаче напряжения, достаточного для открытия транзистора, на базу, возникает малый ток входа и большой выходной ток. Это зависит от размера коэффициента усиления. В этом случае транзистор работает усилителем.

Режим насыщения

Эта работа имеет свои отличия от активного режима. Полупроводник открывается до конца, коллекторный ток достигает наибольшего значения. Его повышения можно добиться только путем изменения нагрузки, либо ЭДС выходной схемы. При корректировке тока базы ток коллектора не изменяется. Режим насыщения имеет особенности в том, что транзистор открыт полностью и работает переключателем. Если объединить режимы насыщения и отсечки биполярных транзисторов, то можно создать ключи.

Свойства хаpaктеристик выхода влияют на режимы. Это изображено на графике.

При отложении на осях координат отрезков, соответствующих наибольшему току коллектора и размеру напряжения, и далее, объединения концов друг с другом, образуется красная линия нагрузки. По графику видно: точка тока и напряжения сместится по линии нагрузки вверх при повышении базового тока.

Участок между заштрихованной хаpaктеристикой выхода и осью V ke является работа отсечки. В этом случае транзистор закрыт, а обратная величина тока мала. Хаpaктеристика в точке А вверху пересекается с нагрузкой, после которой при последующем повышении IВ ток коллектора уже не меняется. На графике участком насыщения является закрашенная часть между осью I k и наиболее крутым графиком.

Режим переключения

Транзисторные ключи служат для бесконтактных переключений в электрических цепях. Эта работа заключается в прерывистой регулировке величины сопротивления полупроводника. Биполярные транзисторы наиболее применимы в устройствах переключения.

Полупроводники применяются в схемах изменения сигналов. Их универсальная работа и широкая классификация дает возможность использовать транзисторы в различных цепях, которые определяют их возможности работы. Основными применяемыми схемами являются усиливающие, а также переключающие цепи.

Область применения биполярных транзисторов

Очень быстро транзисторы заменили вакуумные лампы в различных электронных устройствах. В связи с этим возросла надежность таких устройств и намного уменьшились их размеры. И по сей день, насколько бы «навороченной» не была микросхема, она все равно содержит в себе множество транзисторов (а также диодов, конденсаторов, резисторов и проч.). Только очень маленьких.

Существует два основных типа транзисторов: биполярные, и полевые. В чем же отличие между полевыми и биполярными транзисторами? Ответ заложен в самих их названиях. В биполярном транзисторе в переносе заряда участвуют и электроны, и дырки («бис» — дважды). А в полевом (он же униполярный) — или электроны, или дырки.

Также эти типы транзисторов различаются по областям применения. биполярные используются в основном в аналоговой технике, а полевые — в цифровой.

Транзисторы можно применять не только в схемах усиления сигнала. Например, благодаря тому, что они могут работать в режимах насыщения и отсечки, их используют в качестве электронных ключей. Также возможно использование транзисторов в схемах генераторов сигнала. Если они работают в ключевом режиме, то будет генерироваться прямоугольный сигнал, а если в режиме усиления — то сигнал произвольной формы, зависящий от управляющего воздействия.

Основная область применения любых транзисторов — усиление слабого сигнала за счет дополнительного источника питания.

По виду выполняемой функции (целевому назначению) транзисторы можно разделить на усилительные, переключательные и генераторные.

Общими для расчетов усилителей на транзисторах (постоянного тока, низкой частоты, промежуточной частоты, высокой частоты и др.) являются входное и вы­ходное сопротивления каскада, соотношения, определяющие усиление, частотные свойства, режимы работы, температурная стабильность и прочие показатели.

В соответствии с назначением различают каскады предварительного усиления (напряжения, тока или мощности), предназначенные для получения максимального усиления (обычно по резисториой или трaнcформаторной схемам), и каскады усиле­ния мощности, обеспечивающие на заданной нагрузке необходимую (выходную) мощность при минимальных искажениях и мощности потрeбления от источника пи­тания.

В усилителях, имеющих хорошую температурную и режимную стабилизацию, замена транзистора на однотипный с более высоким значением h2is обычно не при­водит к значительному увеличению тока коллектора в рабочей точке.

Транзисторы некоторых типов используются в специфических классах схем и хаpaктеризуются рядом особенностей режима и условий работы. Эти специализи­рованные транзисторы образуют своеобразный класс приборов, например, транзисто­ры для схем с автоматической регулировкой усиления (АРУ), для усилителей про­межуточной частоты, для работы в микроампериом диапазоне токов, для работы в ВЧ- и СВЧ-диапазонах, лавинные транзисторы, сдвоенные, составные, двухэмиттер- Эые и т. п. Есть узлы, в которых требуются высоковольтные транзисторы. Оптимальное сочетание параметров и хаpaктеристик, удовлетворяющих различным требованиям, дает воз­можность использовать их в радиоэлектронной аппаратуре вместо некоторых уси­лительных и переключательных транзисторов (например, транзистор КТ630).

Для схем с АРУ разработаны специальные транзисторы (германиевые и крем­ниевые), обладающие регулируемым усилением при увеличении рабочего тока (пря­мая АРУ). Уменьшение усиления таких транзисторов на высокой частоте происходит вследствие снижения frp при увеличении тока эмиттера и уменьшения напряжения на коллекторе (например, КТ3128, ГТ328). В связи с этим наблюдается сильная зависимость Кур от тока. Обычно транзисторы имеют меньшую зависимость коэф­фициента усиления от электрического режима. Для зарубежных транзисторов, пред­назначенных для АРУ, часто указывается глубина регулировки усиления (отноше­ние максимального коэффициента усиления к минимальному).

Жесткие требования к экономичности радиоэлектронной аппаратуры в ряде специальных применений способствовали созданию кремниевых транзисторов, функ­ционирующих при малых токах (единицы и десятки микроампер)’, поскольку гер­маниевые транзисторы вследствие большого обратного тока коллектора для этой цели непригодны. Такие приборы (например, транзисторы КТ3102, КТ3107) имеют малые токи 1кБО и большие коэффициенты усиления. Однако при работе в микро­режиме у них ухудшаются частотные свойства, но несколько улучшаются шумо­вые хаpaктеристики. Кроме того, при малых токах обычно увеличивается зависи­мость параметров от температуры, снижается крутизна и затрудняется стабили­зация режима.

Читать еще:  Как проверить реле зарядки генератора

Реализация большого коэффициента усиления по мощности в высокочастот­ных усилителях связана с уменьшением паразитной обратной связи, обусловленной проходной проводимостью транзистора Yi2. Разработаны транзисторы (напри­мер, КТ339АМ), у которых для снижения емкости обратной связи в транзисторную структуру введен интегральный экран (электростатический экран Фарадея), пред­ставляющий собой сочетание диффузионного экрана и дополнительного экранирую­щего диода. Применение интегрального экрана позволяет снизить емкость между коллекторным и базовым выводами в 2,5. 4 раза (емкость С120 снижается до зна­чения ие более 0,3 пФ) и обеспечить большой коэффициент усиления Кур без при­менения схем нейтрализации.

Лавинные транзисторы предназначены для работы в режиме электрического пробоя коллекторного перехода. В зависимости от схемы включения они могут иметь управляемые S-образные (со стороны коллектора или эмиттера) и N-образ- ные (со стороны базы) вольт-амперные хаpaктеристики. Использование обычных транзисторов в этом режиме принципиально возможно и встречается на пpaктике, но при этом не обеспечиваются необходимые быстродействие, амплитуда импуль­сов, стабильность и надежность. Например, одной из причин, снижающих эффек­тивность применения обычных высокочастотных транзисторов в лавинном ре­жиме, является значительное снижение частоты frp при увеличении коллекторного тока.

Лавинные транзи­сторы применяются в релаксационных генераторах в ждущем или автоколеба­тельном режиме.

Следует также отметить транзисторы, предназначенные для использования в инверсном включении (например, зарубежные транзисторы 2N2432, 2N2944 — 2N2946, 2N4138), которые имеют малое остаточное напряжение (менее 1 мВ) и применяются в модуляторах для стабильных усилителей постоянного тока, по­строенных по схеме модуляции — демодуляции, в схемах управления реверсивными двигателями, в логических схемах, амплитудных детекторах и других схемах. В некоторых схемах, например автомобильного зажигания и строчной развертки телевизоров, при запирании транзистор может переходить в режим инверсного включения при работе на комплексную нагрузку.

Разработаны специальные модуляторные транзисторы, в основу которых по­ложены две транзисторные структуры. Это так называемые двухэмиттерные тран­зисторы, имеющие лучшие параметры инверсного включения (например, зарубеж­ные транзисторы 3N74—3N79, 3N108 — 3N111). У отечественного транзистора КТ118 остаточное напряжение менее 0,2 мВ.

Для работы в выходных каскадах усилителя низких частот радиовещательных приемников, высококачественных магнитофонов, радио, телевизоров разработаны германиевые и кремниевые транзисторы разного типа проводимости. Они хаpaктеризуются слабой зависимостью коэффициента усиления от тока, высокой частотой fЬ21э, низким напряжением Ukb нас, что позволяет улучшить акустические показатели устройств в широком диапазоне звуковых частот. В свою очередь, это дает возможность упрощать схемы усилителей, уменьшать число применяемых транзисторов, повышать надежность и снижать себестоимость устройств. Зависимость коэффициента передачи h2ia от тока хаpaктеризуется коэффициентом линейности — отношением коэффициентов передачи при двух значениях тока эмиттера.

Биполярные транзисторы. Виды и хаpaктеристики. Работа и устройство

Биполярные транзисторы это полупроводниковые приборы с тремя электродами, подключенными к трем последовательно находящимся слоям, с различной проводимости. В отличие от других транзисторов, которые переносят один тип заряда, он способен переносить сразу два типа.

Схемы подключения, использующие биполярные транзисторы, зависят от производимой работы и типа проводимости. Проводимость может быть электронной, дырочной.

Разновидности биполярных транзисторов

Биполярные транзисторы разделяют по различным признакам на виды по:
  • Материалу изготовления: кремний или арсенид галлия.
  • Величине частоты: до 3 МГц – низкая, до 30 МГц – средняя, до 300 МГц – высокая, более 300 МГц – сверхвысокая.
  • Наибольшей рассеиваемой мощности: 0-0,3 Вт, 0,3-3 Вт, свыше 3 Вт.
  • Типу прибора: 3 слоя полупроводника с последовательной очередностью типа проводимости.
Устройство и работа

Слои транзистора, как внутренний, так и наружный, объединены с встроенными электродами, которые имеют свои названия в виде базы, эмиттера и коллектора.

Особых отличий по видам проводимости у коллектора и эмиттера не наблюдается, однако процент включения примесей у коллектора намного меньше, что позволяет повысить допустимое напряжение на выходе.

Средний слой полупроводника (база) имеет большую величину сопротивления, так как выполнена из слаболегированного материала. Она контактирует с коллектором на значительной площади. Это позволяет повысить теплоотвод, который необходим вследствие выделения тепла от смещения перехода в другую сторону. Хороший контакт базы с коллектором дает возможность легко проходить электронам, которые являются неосновными носителями.

Слои перехода выполнены по одному принципу. Однако биполярные транзисторы считаются несимметричными приборами. При чередовании крайних слоев местами с одной проводимостью нельзя образовать подобные параметры полупроводника.

Схемы подключения транзисторов выполнены таким образом, что могут обеспечить ему как закрытое, так и открытое состояние. При активной работе, когда полупроводник открыт, смещение эмиттера выполнено в прямом направлении. Для полного понимания этой конструкции, нужно подключить напряжение питания по изображенной схеме.

При этом граница на 2-м переходе коллектора закрыта, ток через нее не идет. Пpaктически возникает обратное явление ввиду рядом расположенных переходов, их влияния друг на друга. Так как к эмиттеру подсоединен минусовой полюс батареи, то переход открытого вида дает возможность электронам проходить на базу, в которой осуществляется их рекомбинация с дырками, являющимися главными носителями. Появляется ток базы Iб. Чем выше базовый ток, тем больше выходной ток. В этом заключается принцип действия усилителей.

По базе протекает только диффузионное движение электронов, так как нет работы электрического поля. Из-за малой толщины этого слоя и значительном градиенте частиц, пpaктически все они поступают на коллектор, хотя база имеет большое сопротивление. На переходе имеется электрическое поле, которое способствует переносу и втягивает их. Токи эмиттера и коллектора одинаковые, если не считать малой потери заряда от перераспределения на базе: I э = I б + I к.

Хаpaктеристики
  • Коэффициент усиления тока β = Iк / Iб.
  • Коэффициент усиления напряжения Uэк / Uбэ.
  • Сопротивление на входе.
  • Хаpaктеристика частоты – возможность работы транзистора до определенной частоты, при выходе за границы которой процессы перехода опаздывают за изменением сигнала.
Режимы работ и схемы

Вид схемы влияет на режим действия биполярного транзистора. Сигнал может сниматься и отдаваться в двух местах для разных случаев, а электродов имеется три штуки. Следовательно, что один произвольный электрод должен быть сразу выходом и входом. По такому принципу подключаются все биполярные транзисторы, и имеют три вида схем, которые мы рассмотрим ниже.

Схема с общим коллектором

Сигнал проходит на сопротивление RL, которое также включено в цепь коллектора.

Такая схема подключения дает возможность создать всего лишь усилитель по току. Достоинством такого эмиттерного повторителя можно назвать образование значительного сопротивления на входе. Это дает возможность для согласования каскадов усиления.

Схема с общей базой

Сигнал входа проходит через С1, далее снимается в цепи выхода коллектора, где базовый электрод общий. В итоге образуется усиление напряжения по подобию с общим эмиттером.

В схеме можно найти недостаток в виде малого входного сопротивления. Схема с общей базой используется чаще всего в качестве генератора колебаний.

Схема с общим эмиттером

Чаще всего при использовании биполярных транзисторов выполняют схему с общим эмиттером. Напряжение проходит по сопротивлению нагрузки RL, к эмиттеру питание подключается отрицательным полюсом.

Сигнал переменного значения приходит на базу и эмиттер. В цепи коллектора он становится по значению больше. Главными элементами схемы являются резистор, транзистор и выходная цепь усилителя с источником питания. Дополнительными элементами стали: емкость С1, которая не дает пройти току на вход, сопротивление R1, благодаря которому открывается транзистор.

В цепи коллектора напряжение транзистора и сопротивления равны значению ЭДС: E= Ik R k +Vk e .

Отсюда следует, что малым сигналом Ec определяется правило изменения разности потенциалов в переменное выходное транзисторного преобразователя. Такая схема дает возможность увеличению тока входа во много раз, так же, как напряжению и мощности.

Из недостатков такой схемы можно назвать малое сопротивление на входе (до 1 кОм). Как следствие, возникают проблемы в образовании каскадов. Сопротивление выхода равно от 2 до 20 кОм.

Рассмотренные схемы показывают действие биполярного транзистора. На его работу влияет частота сигнала и перегрев. Для решения этого вопроса применяют дополнительные отдельные меры. Эмиттерное заземление образует на выходе искажения. Для создания надежности схемы, выполняют подключение фильтров, обратных связей и т.д. После таких мер, схема работает лучше, но уменьшается усиление.

Биполярные транзисторы в различных режимах

Транзистор взаимодействует с сигналами разных видов во входной цепи. В основном транзистор применяется в усилителях. Входной переменный сигнал изменяет ток на выходе. В этом случае используются схемы с общим эмиттером или коллектором. В цепи выхода для сигнала необходима нагрузка.

Чаще всего для этого применяют сопротивление, установленное в цепи выхода коллектора. При его правильном выборе, значение напряжения на выходе будет намного больше, чем на входе.

Во время преобразования сигнала импульсов режим сохраняется таким же, как для синусоидальных сигналов. Качество изменения гармоник определяется хаpaктеристиками частоты полупроводников.

Отсечка

Этот режим образуется при снижении напряжения VБЭ до 0,7 вольта. В таком случае переход эмиттера закрывается, и ток на коллекторе отсутствует, так как в базе отсутствуют электроны, и транзистор остается закрытым.

Активный режим

При подаче напряжения, достаточного для открытия транзистора, на базу, возникает малый ток входа и большой выходной ток. Это зависит от размера коэффициента усиления. В этом случае транзистор работает усилителем.

Режим насыщения

Эта работа имеет свои отличия от активного режима. Полупроводник открывается до конца, коллекторный ток достигает наибольшего значения. Его повышения можно добиться только путем изменения нагрузки, либо ЭДС выходной схемы. При корректировке тока базы ток коллектора не изменяется. Режим насыщения имеет особенности в том, что транзистор открыт полностью и работает переключателем. Если объединить режимы насыщения и отсечки биполярных транзисторов, то можно создать ключи.

Свойства хаpaктеристик выхода влияют на режимы. Это изображено на графике.

При отложении на осях координат отрезков, соответствующих наибольшему току коллектора и размеру напряжения, и далее, объединения концов друг с другом, образуется красная линия нагрузки. По графику видно: точка тока и напряжения сместится по линии нагрузки вверх при повышении базового тока.

Участок между заштрихованной хаpaктеристикой выхода и осью V ke является работа отсечки. В этом случае транзистор закрыт, а обратная величина тока мала. Хаpaктеристика в точке А вверху пересекается с нагрузкой, после которой при последующем повышении IВ ток коллектора уже не меняется. На графике участком насыщения является закрашенная часть между осью I k и наиболее крутым графиком.

Режим переключения

Транзисторные ключи служат для бесконтактных переключений в электрических цепях. Эта работа заключается в прерывистой регулировке величины сопротивления полупроводника. Биполярные транзисторы наиболее применимы в устройствах переключения.

Полупроводники применяются в схемах изменения сигналов. Их универсальная работа и широкая классификация дает возможность использовать транзисторы в различных цепях, которые определяют их возможности работы. Основными применяемыми схемами являются усиливающие, а также переключающие цепи.


Снегоуборщик бензиновый MTD OPTIMA ME 76: обзор, отзывы

Снегоуборщик бензиновый MTD OPTIMA ME 76: обзор, отзывы Снегоуборщик бензиновый MTD OPTIMA ME 76: обзор, отзывы Снегоуборщик бензиновый MTD Optima ME 76 MTD Optima ME 76 – снегоуборщик американского...

19 05 2024 2:47:36

Какой кислотой удалить ржавчину

Какой кислотой удалить ржавчину Какой кислотой удалить ржавчину Как убрать ржавчину с металла и средства для ее удаления Нередко на металлических изделиях вследствие воздействия...

18 05 2024 14:47:40

Мощный iOS-синтезатор AudioKit Synth One теперь можно установить на iPhone

Мощный iOS-синтезатор AudioKit Synth One теперь можно установить на iPhone  Полностью бесплатный и лишенный рекламы синтезатор AudioKit Synth One вышел в виде iOS-приложения для iPhone. Он так же удобен и крут, как iPad-версия....

17 05 2024 6:28:24

Снегоуборщик бензиновый Stiga ST 3256 P: обзор, отзывы

Снегоуборщик бензиновый Stiga ST 3256 P: обзор, отзывы Снегоуборщик бензиновый Stiga ST 3256 P: обзор, отзывы Снегоуборщик бензиновый Stiga ST 3256 P Stiga ST 3256 P – мощный бензиновый снегоуборщик,...

16 05 2024 1:27:35

65Х13 или 95х18 что лучше для ножа

65Х13 или 95х18 что лучше для ножа 65Х13 или 95х18 что лучше для ножа Кузница Назарова В.В. Производство и продажа ножей EN RU Сталь 65х13 для ножей плюсы и минусы Сталь 65х13 - одна из...

15 05 2024 15:43:42

Основы эквализации: когда нужно усилить частоты, а когда ослабить

Основы эквализации: когда нужно усилить частоты, а когда ослабить  Разбираемся, какие типы эквалайзеров существуют, как пользоваться эквалайзером и какой вид эквализации нужно применять к сигналу в зависимости от контекста....

14 05 2024 19:23:58

Как поменять масло в гидравлическом домкрате

Как поменять масло в гидравлическом домкрате Как поменять масло в гидравлическом домкрате Заправка и замена масла в гидравлическом домкрате, выбор масла, видео Гидравлический домкрат — это устройство...

13 05 2024 13:54:35

Официальное заявление Gibson: от вражды к объединению

Официальное заявление Gibson: от вражды к объединению  Gibson опубликовала официальное заявление, обозначив свою позицию по всем вопросам. Компания предлагает объединиться ради спасения рынка от подделок....

12 05 2024 9:56:28

Antelope Audio выпустила первый в мире профессиональный моделирующий USB-микрофон и два мощных аудиоинтерфейса

Antelope Audio выпустила первый в мире профессиональный моделирующий USB-микрофон и два мощных аудиоинтерфейса  Обновки от Antelope Audio: USB-микрофон профессионального уровня Antelope Audio Edge Go, обновление интерфейсов про-уровня Orion32. Девайсы мощнее мощного!...

11 05 2024 20:31:52

Метод бринелля и роквелла и виккерса

Метод бринелля и роквелла и виккерса Метод бринелля и роквелла и виккерса Метод бринелля и роквелла и виккерса Если у Вас возникают проблемы, пожалуйста дайте нам знать, отправив письмо на...

10 05 2024 3:59:47

Импульсная сварка своими руками схема устройство

Импульсная сварка своими руками схема устройство Импульсная сварка своими руками схема устройство Импульсный сварочный аппарат Какой домашний мастер, а тем более автолюбитель, не мечтает иметь в своем...

09 05 2024 8:45:43

Снегоуборщик Champion ST246: обзор, отзывы

Снегоуборщик Champion ST246: обзор, отзывы Снегоуборщик Champion ST246: обзор, отзывы Снегоуборщик Champion ST246. Обзор, хаpaктеристики, отзывы Снегоуборщик Champion ST246 Снегоотбрасыватель...

08 05 2024 14:42:10

Мультиметр цифровой для чего он нужен

Мультиметр цифровой для чего он нужен Мультиметр цифровой для чего он нужен Что можно измерить мультиметром На заре развития знаний об электричестве, достаточно было оперировать такими...

07 05 2024 6:38:43

Таблица расчета автомата по мощности

Таблица расчета автомата по мощности Таблица расчета автомата по мощности Подбор автоматического выключателя по мощности Выбор защитных автоматических выключателей производится не только в...

06 05 2024 0:12:11

Жан-Мишель Жарр выпустил приложение EōN — с ним можно слушать музыку француза бесконечно

Жан-Мишель Жарр выпустил приложение EōN — с ним можно слушать музыку француза бесконечно  Жан-Мишель Жарр хочет, чтобы вы слушали его музыку бесконечно. Алгоритм приложения EON генерирует неповторяющееся уникальное музыкальное полотно....

05 05 2024 12:54:47

Микрофоны Behringer BA 19A и B 906: клоны Shure Beta 91A и Sennheiser Evolution e906 по доступной цене

Микрофоны Behringer BA 19A и B 906: клоны Shure Beta 91A и Sennheiser Evolution e906 по доступной цене  Машину клонирования уже не остановить: Behringer анонсировала микрофоны BA 19A и B 906, повторяющие известные модели Shure и Sennheiser....

04 05 2024 10:37:15

Рейтинг автомобильных сигнализаций с обратной связью

Рейтинг автомобильных сигнализаций с обратной связью Рейтинг автомобильных сигнализаций с обратной связью Лучшие сигнализации с автозапуском Согласно статистике, в России ежегодно угоняют десятки тысяч...

03 05 2024 19:32:32

Резцы для чистовой обработки металла

Резцы для чистовой обработки металла Резцы для чистовой обработки металла ЧИСТОВОЕ ТОЧЕНИЕ Чистовое точение в условиях заводов тяжелого машиностроения часто выполняется теми же проходными и...

02 05 2024 13:28:42

Как правильно подсоединить приставку к телевизору

Как правильно подсоединить приставку к телевизору Как правильно подсоединить приставку к телевизору Подключение цифровой приставки к телевизору Видео с красивой и четкой картинкой доставляет зрителю...

01 05 2024 20:48:12

Akai MPC: сэмплер, навсегда изменивший представление о современных музыкантах

Akai MPC: сэмплер, навсегда изменивший представление о современных музыкантах  История сэмплера Akai MPC: как Роджер Линн потерпел неудачу, а затем создал инструмент, который сделал музыку такой, какой мы её знаем сегодня....

30 04 2024 7:14:24

Как гнуть оргстекло в домашних условиях

Как гнуть оргстекло в домашних условиях Как гнуть оргстекло в домашних условиях Как согнуть оргстекло В нашу жизнь все активнее входят синтетические материалы — это различные пластики, волокна,...

29 04 2024 19:59:42

Как включается амперметр в схему

Как включается амперметр в схему Как включается амперметр в схему Подключение амперметра и вольтметра в сети постоянного и переменного тока Постоянный ток не меняет направления во...

28 04 2024 16:34:27

Книга YOUR MIX SUCKS Waves Edition расскажет, почему ваши миксы – отстой, и как это исправить

Книга YOUR MIX SUCKS Waves Edition расскажет, почему ваши миксы – отстой, и как это исправить  Компания Waves и звукорежиссёр Марк Моцарт выпустили новую версию книги YOUR MIX SUCKS Waves Edition, которая расскажет все подробности о сведении музыки....

27 04 2024 1:37:22

Примеры металлургии в химии

Примеры металлургии в химии Примеры металлургии в химии Примеры металлургии в химии ХиМуЛя.com Владельцы сайта Галина Пчёлкина Урок №53. Понятие о металлургии. Способы получения...

26 04 2024 15:39:19

Стив Джобс пишет музыку: первая презентация GarageBand Стивом Джобсом и Джоном Майером в 2004 году

Стив Джобс пишет музыку: первая презентация GarageBand Стивом Джобсом и Джоном Майером в 2004 году  Не удивляйтесь: презентация GarageBand прошла 15 лет назад. Как Стив Джобс и Джон Майер писали песни перед полным залом можно посмотреть в архивном видео....

25 04 2024 4:19:33

Как на схемах обозначается фаза и ноль

Как на схемах обозначается фаза и ноль Как на схемах обозначается фаза и ноль Обозначение фазы и нуля в электрике В процессе самостоятельной установки и подключения электрооборудования (этом...

24 04 2024 9:15:20

Крейсмейсер что это такое

Крейсмейсер что это такое Крейсмейсер что это такое Крейцмейсель — ударно-режущий слесарный инструмент Термином немецкого происхождения «крейцмейсель» обозначается один из видов...

23 04 2024 17:42:40

Анемометр что это такое

Анемометр что это такое Анемометр что это такое Что такое анемометр и что им измеряют? Про анемометр слышал пpaктически каждый. Прибор активно используется на метеорологических...

22 04 2024 23:51:17

Чем сверлить печатные платы

Чем сверлить печатные платы Чем сверлить печатные платы Как правильно сверлить дорожки на печатной плате? Как правильно сверлить дорожки на печатной плате? Я новичок в изготовление...

21 04 2024 4:39:16

Как быстро очистить металл от ржавчины

Как быстро очистить металл от ржавчины Как быстро очистить металл от ржавчины Как убрать ржавчину с металла Самая распространенная проблема всех черных металлов — появление ржавчины на их...

20 04 2024 21:53:46

Сталь х12мф хаpaктеристики применение для ножей

Сталь х12мф хаpaктеристики применение для ножей Сталь х12мф хаpaктеристики применение для ножей Инструментальная сталь Х12МФ Инструментальная сталь Х12МФ обладает антикоррозийными хаpaктеристиками. Она...

19 04 2024 17:40:20

Как зарядить аккумулятор необслуживаемый автомобиля зарядным устройством

Как зарядить аккумулятор необслуживаемый автомобиля зарядным устройством Как зарядить аккумулятор необслуживаемый автомобиля зарядным устройством Как правильно зарядить необслуживаемый автомобильный аккумулятор Сегодня на смену...

18 04 2024 2:37:33

Как выбрать хорошую посудомоечную машину

Как выбрать хорошую посудомоечную машину Как выбрать хорошую посудомоечную машину Как выбрать посудомоечную машину (2018) Агата Кристи уверяла, что сюжеты детективных романов она придумывает во...

17 04 2024 5:40:47

Чем отличается симистор от транзистора

Чем отличается симистор от транзистора Чем отличается симистор от транзистора Чем симистор отличается от тиристора Тиристором называется управляемый полупроводниковый переключатель, обладающий...

16 04 2024 4:33:19

Кто создал первую лампу накаливания

Кто создал первую лампу накаливания Кто создал первую лампу накаливания Все о создании первой лампочки в мире Попытки побороть темноту, прогнать ее принимались людьми с давних времен. Для...

15 04 2024 19:28:39

Из какой стали делают профильные трубы

Из какой стали делают профильные трубы Из какой стали делают профильные трубы Размеры и вес профильной трубы Металлические каркасы для самых различных сооружений более удобны и надежны. При...

14 04 2024 10:37:20

Как определить размер скобы для степлера

Как определить размер скобы для степлера Как определить размер скобы для степлера Как подобрать скобы для мебельного степлера Строительный степлер сегодня широко используется специалистами...

13 04 2024 10:22:24

Расчет трaнcформатора программа онлайн

Расчет трaнcформатора программа онлайн Расчет трaнcформатора программа онлайн Расчет трaнcформатора: онлайн калькулятор или дедовский метод для дома — выбери сам Ремонт современных...

12 04 2024 21:50:12

Как открутить болт не повредив краску

Как открутить болт не повредив краску Не бит, не крашен… Алгоритм поиска следов кузовного ремонта Первое, на что следует обратить внимание, это… лючок...

11 04 2024 18:25:57

Электро символы и обозначения

Электро символы и обозначения Электро символы и обозначения Стандартные условные графические и буквенные обозначения элементов электрических схем. С ДРУГОГО САЙТА: Условные графические...

10 04 2024 4:12:50

Части ключа как называются

Части ключа как называются Части ключа как называются Виды ключей для замков Простые современные ключи С тех пор, развитее технологий шагнуло далеко вперед и ключи, как и замки,...

09 04 2024 1:18:37

Как определить замкнутую банку аккумулятора

Как определить замкнутую банку аккумулятора Как определить замкнутую банку аккумулятора Проверка аккумулятора на КЗ: основные признаки короткого замыкания между пластинами "Как определить короткое...

08 04 2024 16:13:44

Подключение однофазного счетчика в гараже

Подключение однофазного счетчика в гараже Подключение однофазного счетчика в гараже Схема электропроводки в гараже: особенности проектирования и монтажа Люди строят здания в основном с двумя...

07 04 2024 7:52:53

Кто такой плотник для детей

Кто такой плотник для детей Кто такой плотник для детей Профессия плотник: какие изделия делает и чем занимается Существует ряд специальностей, которые всегда были и еще долго будут...

06 04 2024 14:49:19

Где разрезать керамогранитную плитку

Где разрезать керамогранитную плитку Где разрезать керамогранитную плитку Резка керамогранита без сколов в домашних условиях Керамогранит – один из наиболее твёрдых материалов, применяемых...

05 04 2024 18:40:24

Почему стиральная машинка при отжиме сильно прыгает

Почему стиральная машинка при отжиме сильно прыгает Почему стиральная машинка при отжиме сильно прыгает Прыгает стиральная машинка. В основном при отжиме. Какие причины и что делать? Стиральная машинка...

04 04 2024 6:40:56

Зачем и как создать музыкальный лейбл: о чём стоит подумать

Зачем и как создать музыкальный лейбл: о чём стоит подумать О чём нужно помнить перед тем, как создать собственный музыкальный лейбл, и с какими проблемами сталкиваются те, кто обрёл независимость....

03 04 2024 12:41:53

Как правильно подобрать автоматический выключатель по нагрузке

Как правильно подобрать автоматический выключатель по нагрузке Как правильно подобрать автоматический выключатель по нагрузке Выбор номинала автомата защиты Собирая электрощиток или подключая новую крупную бытовую...

02 04 2024 20:57:12

Схема полиспаста с кратностью 2

Схема полиспаста с кратностью 2 Схема полиспаста с кратностью 2 Все о спецтехнике Полиспаст. Назначение и устройство, виды, схема. Привод грузоподъемного крана имеет свой предел. Вернее...

01 04 2024 6:15:26

Какие поверхности называют линейчатыми

Какие поверхности называют линейчатыми Какие поверхности называют линейчатыми Ответы по начертательной геометрии 1.Какой способ задания поверхности называется кинематическим. Поверхность...

31 03 2024 7:33:11

Еще:
Музыка -1 :: Музыка -2 :: Музыка -3 :: Музыка -4 :: Музыка -5 :: Музыка -6 :: Музыка -7 :: Музыка -8 :: Музыка -9 :: Музыка -10 :: Музыка -11 ::