Микросхема hcf4060be и ее аналог
Конструкция зарядного устройства от шуруповёрта
Схема, устройство, ремонт
Без сомнений, электроинструмент значительно облегчает наш труд, а также сокращает время рутинных операций. В ходу сейчас и всевозможные шуруповёрты с автономным питанием.
Рассмотрим устройство, принципиальную схему и ремонт зарядного устройства для аккумуляторов от шуруповёрта фирмы «Интерскол».
Для начала взглянем на принципиальную схему. Она срисована с реальной печатной платы зарядного устройства.
Печатная плата зарядного устройства (CDQ-F06K1).
Силовая часть зарядного устройства состоит из силового трaнcформатора GS-1415. Мощность его около 25-26 Ватт. Считал по упрощённой формуле, о которой уже говорил здесь.
Пониженное переменное напряжение 18V со вторичной обмотки трaнcформатора поступает на диодный мост через плавкий пpeдoxpaнитель FU1. Диодный мост состоит из 4 диодов VD1-VD4 типа 1N5408. Каждый из диодов 1N5408 выдерживает прямой ток 3 ампера. Электролитический конденсатор C1 сглаживает пульсации напряжения после диодного моста.
Основа схемы управления – микросхема HCF4060BE, которая является 14-разрядным счётчиком с элементами для задающего генератора. Она управляет биполярным транзистором структуры p-n-p S9012. Транзистор нагружен на электромагнитное реле S3-12A. На микросхеме U1 реализован своеобразный таймер, который включает реле на заданное время заряда – около 60 минут.
При включении зарядника в сеть и подключении аккумулятора контакты реле JDQK1 разомкнуты.
Микросхема HCF4060BE запитывается от стабилитрона VD6 – 1N4742A (12V). Стабилитрон ограничивает напряжение с сетевого выпрямителя до уровня 12 вольт, так как на его выходе около 24 вольт.
Если взглянуть на схему, то не трудно заметить, что до нажатия кнопки «Пуск» микросхема U1 HCF4060BE обесточена – отключена от источника питания. При нажатии кнопки «Пуск» напряжение питания от выпрямителя поступает на стабилитрон 1N4742A через резистор R6.
Далее пониженное и стабилизированное напряжение поступает на 16 вывод микросхемы U1. Микросхема начинает работать, а также открывается транзистор S9012, которым она управляет.
Напряжение питания через открытый транзистор S9012 поступает на обмотку электромагнитного реле JDQK1. Контакты реле замыкаются, и на аккумулятор поступает напряжение питания. Начинается заряд аккумулятора. Диод VD8 (1N4007) шунтирует реле и защищает транзистор S9012 от скачка обратного напряжения, которое образуется при обесточивании обмотки реле.
Диод VD5 (1N5408) защищает аккумулятор от разряда, если вдруг будет отключено сетевое питание.
Что будет после того, когда контакты кнопки «Пуск» разомкнутся? По схеме видно, что при замкнутых контактах электромагнитного реле плюсовое напряжение через диод VD7 (1N4007) поступает на стабилитрон VD6 через гасящий резистор R6. В результате микросхема U1 остаётся подключенной к источнику питания даже после того, как контакты кнопки будут разомкнуты.
Сменный аккумулятор.
Сменный аккумулятор GB1 представляет собой блок, в котором последовательно соединено 12 никель-кадмиевых (Ni-Cd) элементов, каждый по 1,2 вольта.
На принципиальной схеме элементы сменного аккумулятора обведены пунктирной линией.
Суммарное напряжение такого составного аккумулятора составляет 14,4 вольт.
Также в блок аккумуляторов встроен датчик температуры. На схеме он обозначен как SA1. По принципу действия он похож на термовыключатели серии KSD. Маркировка термовыключателя JJD-45 2A. Конструктивно он закреплён на одном из Ni-Cd элементов и плотно прилегает к нему.
Один из выводов термодатчика соединён с минусовым выводом аккумуляторной батареи. Второй вывод подключен к отдельному, третьему разъёму.
Алгоритм работы схемы довольно прост.
При включении в сеть 220V зарядное устройство ни как не проявляет свою работу. Индикаторы (зелёный и красный светодиоды) не светятся. При подключении сменного аккумулятора загорается зелёный светодиод, который свидетельствует о том, что зарядник готов к работе.
При нажатии кнопки «Пуск» электромагнитное реле замыкает свои контакты, и аккумулятор подключается к выходу сетевого выпрямителя, начинается процесс заряда аккумулятора. Загорается красный светодиод, а зелёный гаснет. По истечении 50 – 60 минут, реле размыкает цепь заряда аккумулятора. Загорается светодиод зелёного цвета, а красный гаснет. Зарядка завершена.
После зарядки напряжение на клеммах аккумулятора может достигать 16,8 вольт.
Такой алгоритм работы примитивен и со временем приводит к так называемому «эффекту памяти» у аккумулятора. То есть ёмкость аккумулятора снижается.
Если следовать правильному алгоритму заряда аккумулятора для начала каждый из его элементов нужно разрядить до 1 вольта. Т.е. блок из 12 аккумуляторов нужно разрядить до 12 вольт. В заряднике для шуруповёрта такой режим не реализован.
Вот зарядная хаpaктеристика одного Ni-Cd аккумуляторного элемента на 1,2V.
На графике показано, как во время заряда меняется температура элемента (temperature), напряжение на его выводах (voltage) и относительное давление (relative pressure).
Специализированные контроллеры заряда для Ni-Cd и Ni-MH аккумуляторов, как правило, работают по так называемому методу дельта -ΔV. На рисунке видно, что в конце зарядки элемента происходить уменьшение напряжения на небольшую величину – порядка 10mV (для Ni-Cd) и 4mV (для Ni-MH). По этому изменению напряжения контроллер и определяет, зарядился ли элемент.
Так же во время зарядки происходит контроль температуры элемента с помощью термодатчика. Тут же на графике видно, что температура зарядившегося элемента составляет около 45 0 С.
Вернёмся к схеме зарядного устройства от шуруповёрта. Теперь понятно, что термовыключатель JDD-45 отслеживает температуру аккумуляторного блока и разрывает цепь заряда, когда температура достигнет где-то 45 0 С. Иногда такое происходит раньше того, как сработает таймер на микросхеме HCF4060BE. Такое происходит, когда емкость аккумулятора снизилась из-за «эффекта памяти». При этом полная зарядка такого аккумулятора происходит чуть быстрее, чем за 60 минут.
Как видим из схемотехники, алгоритм заряда не самый оптимальный и со временем приводит к потере электроёмкости аккумулятора. Поэтому для зарядки аккумулятора можно воспользоваться универсальным зарядным устройством, например, таким, как Turnigy Accucell 6.
Возможные неполадки зарядного устройства.
Со временем из-за износа и влажности кнопка SK1 «Пуск» начинает плохо сpaбатывать, а иногда и вообще отказывает. Понятно, что при неисправности кнопки SK1 мы не сможем подать питание на микросхему U1 и запустить таймер.
Также может иметь место выход из строя стабилитрона VD6 (1N4742A) и микросхемы U1 (HCF4060BE). В таком случае при нажатии кнопки включение зарядки не происходит, индикация отсутствует.
В моей пpaктике был случай, когда стабилитрон пробило, мультиметром он «звонился» как кусок провода. После его замены зарядка стала исправно работать. Для замены подойдёт любой стабилитрон на напряжение стабилизации 12V и мощностью 1 Ватт. Проверить стабилитрон на «пробой» можно также, как и обычный диод. О проверке диодов я уже рассказывал.
После ремонта нужно проверить работу устройства. Нажатием кнопки запускаем зарядку АКБ. Приблизительно через час зарядное устройство должно отключиться (засветится индикатор «Сеть» (зелёный). Вынимаем АКБ и делаем «контрольный» замер напряжения на её клеммах. АКБ должна быть заряженной.
Если же элементы печатной платы исправны и не вызывают подозрения, а включения режима заряда не происходит, то следует проверить термовыключатель SA1 (JDD-45 2A) в аккумуляторном блоке.
Схема достаточно примитивна и не вызывает проблем при диагностике неисправности и ремонте даже у начинающих радиолюбителей.
Микросхема hcf4060be и ее аналог
Developed in conjunction with Joomla extensions.
Программы
Developed in conjunction with Joomla extensions.
Книги
Developed in conjunction with Joomla extensions.
Схемки на СD4060В
Внутри микросхемы CD4060B есть двоичный счетчик и два логических инвертора для выполнения на них мультивибратора (рис. 1) Мультивибратор генерирует импульсы, а счетчик их считает. Вес старшего выхода счетчика 8192. Это значит, что логический уровень на этом выходе будет меняться через каждые 8192 импульса, выработанного генератором. Всего у счетчика десять выходов с разными весовыми коэффициентами — от 8 до 8192, причем выход с весом 1024 отсутствует. Весовые коэффициенты других выходов означают то, через сколько импульсов, выработанных мультивибратором, на них меняется логический уровень Например выход «256» значит, что если на этом выходе был нуль, то единица появится через 256 импульсов, а еще через 256 импульсов будет снова ноль и так далее. А на выходе, например, «2048» логический уровень будет меняться через 2048 импульсов.
Вход R служит для обнуления счетчика. При подаче на него логической единицы все выходы принимают нулевые значения и после смены уровня на входе R на лог. ноль, счет возобновится с нулевой отметки. А пока на R есть единица, счетчик будет держаться на нулевой отметке и не будет работать (заблокирован в нулевом положении), независимо от работы мультивибратора.
Микросхема CD4060B выполнена в стандартном корпусе с 16-ю выводами. Он похож на корпус К561ЛА7 или К561ЛН2, но у него на одну пару выводов больше (он длиннее).
CD4060B так же как К561ЛА7 или К561ЛН2 микросхема КМОП-логики, что значит, что вся схема микросхемы сделана на полевых транзисторах. Поэтому входное сопротивление микросхемы очень высокое, а потрeбление энергии самой микросхемой от источника очень малое.
На рисунке 2 показана схема, моделирующая работу игрального кубика (который кидают и смотрят сколько точек на его стороне, обращенной вверх). На выходах включены шесть светодиодов. Любой из них загорается, когда на выходе к которому он подключен есть логический ноль, а при логической единице -гаснет. Детали С1, R1 и R2 вместе с логическими инверторами микросхемы образуют мультивибратор, который может работать только тогда, когда контакты кнопки S1 разомкнуты.
Работает схема так: нажимаете кнопку S1 и мультивибратор запускается, начинает генерировать импульсы, которые считает счетчик.
Частота импульсов довольно высокая, поэтому за одну секунду светодиоды переключаются множество раз и глаз человека не способен это заметить (может быть только едва заметное мерцание). В любой момент вы отпускаете кнопку, её контакты замыкаются и счетчик
замирает в том состоянии, которое было в момент отпускания кнопки. При этом будет гореть некоторое число светодиодов. Сосчитав их можно сказать какое число выпало на «электронном кубике».
Кнопка S1 должна быть размыкающей. Вместо неё можно применить выключатель, -выключаете его, ждете некоторое время, а потом включаете и смотрите результат.
Светодиоды могут быть любого типа, но АЛ307 наиболее доступные. Сопротивления резисторов R3-R8 может быть от 300 Ом до 1-2 КОм.
Питается «кубик» от одной «плоской» батарейки напряжением 4,5V. Но можно использовать и другой источник (от 4 до 15V). Основное назначение любого двоичного счетчика считать поступающие на его вход импульсы. Поэтому при поступлении на его вход периодического импульсного сигнала, на всех его выходах будут тоже импульсные сигналы, но разных частот, причем, эти частоты будут ниже частоты входного сигнала, и выражаться как величина частоты входного сигнала, деленная на удвоенный весовой коэффициент выхода.
То есть, если мультивибратор нашей микросхемы CD4060B будет выpaбатывать импульсы, например, частотой 16 кГц, то на выводе 7 будет 16 / (2 • 8) = 1 кГц, на остальных выводах, соответственно:
на выв. 5 — 0,5 кГц,
на выв. 4 — 0,25 кГц,
на выв. 6 — 125 Гц,
на выв. 14 — 62,5 Гц,
на выв. 13 — 31,25 Гц,
на выв. 15 — 15,625 Гц,
на выв. 1 будет примерно 3,9 Гц,
на выв. 2, примерно, 1,95 Гц,
на выводе 3 примерно 0,97 Гц.
Это свойство можно использовать в звуковом сигнализаторе (рис. 3).
Оставлять комментарии могут только зарегистрированные пользователи
Изготовление устройства зарядного для шуруповёрта своими руками
При использовании шуруповёрта пользователи часто сталкиваются с повреждением зарядного устройства (ЗУ). В первую очередь это связано с нестабильностью параметров электрической сети, к которой подключается устройство заряда, а во вторую — с выходом из строя аккумуляторной батареи. Решается эта проблема двумя способами: покупкой нового зарядного устройства для шуруповёрта или его самостоятельным ремонтом.
Виды зарядных устройств
Популярность шуруповёрта вызвана тем, что он упрощает процесс закручивания или выкручивания различного крепёжного элемента. Хаpaктеризуясь мобильностью и небольшими размерами, он незаменим при сборке мебельных конструкций, разборке техники, кровельных и других строительных работах. Своей мобильностью инструмент обязан входящим в его конструкцию аккумуляторным батареям.
Достоинство применения аккумуляторов в возможности их неоднократного использования. Аккумуляторы, отдавая накопленную энергию устройству, периодически сами нуждаются в подзарядке. Для восстановления величины их ёмкости и служат зарядные устройства.
Зарядка аккумулятора шуруповёрта происходит двумя способами: встроенным или внешним зарядным прибором. Встроенное ЗУ позволяет заряжать батарею, не извлекая её из шуруповёрта. Схема восстановления ёмкости расположена непосредственно вместе с аккумулятором. В то время как выносное подразумевает их извлечение и установку в отдельное приспособление для заряда. Различают ЗУ по типу восстанавливаемых батарей. Применяемые аккумуляторы бывают:
- никель-кадмиевые (NiCd);
- никель-металл-гидридные (NiMH);
- литий-ионные (LiIon).
Конечная стоимость шуруповёрта не в последнюю очередь зависит от типа используемых батарей и возможностей зарядного устройства. ЗУ выпускаются на 12 вольт, 14,4 вольта и 18 вольт. Кроме этого, ЗУ разделяются по возможностям и могут иметь:
- индикацию;
- быструю зарядку;
- разный тип защиты.
Наиболее используемые ЗУ используют в работе медленный заряд, обусловленный малым током. Они не содержат в своей конструкции индикацию работы и не отключаются автоматически. Это более справедливо к встроенным приборам восстановления ёмкости. ЗУ, построенные на импульсных схемах, обеспечивают возможность ускоренного заряда. Они автоматически отключаются по достижению требуемой величины напряжения или в случае возникновения аварийной ситуации.
Типы применяемых батарей
Никель-кадмиевые аккумуляторы не испытывают проблем при заряде в ускоренном режиме. Такие батарейки обладают высокой нагрузочной способностью, невысокой ценой и спокойно переносят работы при минусовой температуре. К недостаткам относят: эффект памяти, токсичность, большую скорость саморазряда. Поэтому перед тем, как заряжать такого типа аккумулятор, его необходимо полностью разрядить. Батарея имеет высокую степень саморазряда и быстро разряжается, даже если её не используют. В настоящее время пpaктически не выпускаются из-за своей токсичности. Из всех типов обладают наименьшей ёмкостью.
Никель-металл-гидридные по всем параметрам превосходят NiCd. У них меньше величина саморазряда, меньше выражен эффект памяти. При одинаковых размерах они имеют большую ёмкость. В их составе нет токсичного материала, кадмия. В ценовой категории этот тип занимает среднее положение, поэтому наиболее распространённый тип ёмкостных элементов в шуруповёрте именно он.
Литий-ионные хаpaктеризуются высокой ёмкостью и низким значением саморазряда. Эти аккумуляторы плохо переносят перегрев и глубокий разряд. В первом случае они способны взорваться, а во втором уже не смогут восстановить свою ёмкость. Они также способны работать при отрицательных температурах и не имеют эффекта памяти. Использование ЗУ с микроконтроллером позволило защитить батарею от перезаряда, тем самым сделав этот тип наиболее привлекателен к применению. По цене они дороже, чем первые два типа.
Кроме этого, основной хаpaктеристикой аккумуляторных батарей, является их ёмкость. Чем выше этот показатель — тем дольше работает шуруповёрт. Единица измерения ёмкости — миллиампер в час (мА/ч). Конструкция батареи заключается в последовательном соединении элементов питания и помещение их в общий корпус. Для Li-Ion напряжение на одном элементе составляет 3,3 вольта, для NiCd и NiMH — 1,2 вольта.
Принцип работы ЗУ
При выходе из строя ЗУ есть смысл сначала попробовать его восстановить. Для проведения ремонта желательно иметь схему прибора заряда и мультиметр. Схемотехника многих приборов заряда построена на микросхеме HCF4060BE. Её схема включения формирует выдержку интервала времени заряда. Она включает в себя цепь кварцевого генератора и 14-разрядный двоичный счётчик, благодаря чему на ней легко реализовывается таймер.
Принцип работы схемы зарядника проще разобрать на реальном примере. Вот как выглядит она в шуруповёрте Интерскол:
Такая схема предназначена для заряда 14,4-вольтовых аккумуляторов. Она имеет светодиодную индикацию, показывающую подключение в сеть, горит светодиод LED2, и процесс заряда, горит LED1. В качестве счётчика используется микросхема U1 HCF4060BE или её аналоги: TC4060, CD4060. Выпрямитель собран на силовых диодах VD1-VD4 типа 1N5408. Транзистор PNP типа Q1 работает в ключевом режиме, к его выводам подключены управляющие контакты реле S3-12A. Работой ключа управляет контроллер U1.
При включении ЗУ переменное напряжение сети 220 вольт через пpeдoxpaнитель поступает на понижающий трaнcформатор, на выходе которого её значение составляет 18 вольт. Далее, проходя через диодный мост, выпрямляется и попадает на сглаживающий конденсатор C1 ёмкостью 330 мкФ. Величина напряжения на нём равна 24 вольта. Во время подсоединения батареи контактная группа реле находится в разомкнутом положении. Микросхема U1 запитывается через стабилитрон VD6 постоянным сигналом равным 12 вольт.
Когда кнопка «Пуск» SK1 нажата, на 16-й вывод контроллера U1 поступает стабилизированный сигнал через резистор R6. Ключ Q1 открывается и через него поступает ток на выводы реле. Контакты прибора S3-12A замыкаются и начинается процесс зарядки. Диод VD8, включённый параллельно транзистору, защищает его от скачка напряжения, вызванного отключением реле.
Используемая кнопка SK1 работает без фиксации. При её отпускании всё питание поступает через цепочку VD7, VD6 и ограничительное сопротивление R6. И также питание подаётся на светодиод LED1 через резистор R1. Светодиод загорается, сигнализируя, что начат процесс заряда. Время работы микросхемы U1 настроено на один час работы, после чего питание снимается с транзистора Q1 и, соответственно, с реле. Его контактная группа разрывается и ток заряда пропадает. Светодиод LED1 гаснет.
Этот прибор заряда оборудован схемой защиты от перегрева. Реализуется такая защита с помощью датчика температуры — термопара SA1. Если во время процесса температура достигнет значения более 45 градусов Цельсия, то термопара сработает, микросхема получит сигнал и цепь заряда разорвётся. После окончания процесса напряжение на клеммах батареи достигает 16,8 вольт.
Такой способ зарядки не считается интеллектуальным, ЗУ не может определить, в каком состоянии находится батарея. Из-за чего продолжительность работы шуруповёрта от аккумулятора будет уменьшаться в связи с развитием у него эффекта памяти. То есть ёмкость аккумулятора каждый раз после заряда снижается.
Самодельные приборы для заряда
Самостоятельно сделать зарядку для шуруповёрта на 12 вольт своими руками, по аналогии с той, что применяется в ЗУ Интерскол, довольно просто. Для этого потребуется воспользоваться способностью термореле разрывать контакт при достижении определённой температуры.
В схеме R1 и VD2 представляют собой датчик прохождения тока заряда, R1 предназначен для защиты диода VD2. При подаче напряжения транзистор VT1 открывается, через него проходит ток и светодиод LH1 начинает светиться. Величина напряжения падает на цепочке R1, D1 и прикладывается к аккумулятору. Ток заряда проходит через термореле. Как только температура аккумулятора, к которому подключено тепловое реле, превысит допустимое значение, оно сpaбатывает. Контакты реле переключаются, и ток заряда начинает протекать через сопротивление R4, светодиод LH2 загорается, сообщая об окончании заряда.
Читать еще: Схема подключения генератора к сети дома щитокСхема на двух транзисторах
Ещё одно простое устройство можно выполнить на доступных элементах. Эта схема работает на двух транзисторах КТ829 и КТ361.
Величина тока заряда управляется транзистором КТ361 к коллектору, которого подключён светодиод. Этот транзистор также управляет состоянием составного элемента КТ829. Как только ёмкость батареи начинает увеличиваться, ток заряда уменьшается и светодиод соответственно плавно гаснет. Сопротивлением R1 задаётся максимальный ток.
Момент полного заряда батареи определяется необходимым напряжением на ней. Требуемая величина выставляется переменным резистором на 10 кОм. Чтобы её проверить, понадобится поставить вольтметр на клеммах подключения батареи, не подключая её саму. В качестве источника постоянного напряжения используется любой выпрямительный блок, рассчитанный на ток не менее одного ампера.
Использование специализированной микросхемы
Производители шуруповёртов стараются снизить цены на свою продукцию, часто это достигается путём упрощения схемы ЗУ. Но такие действия приводят к быстрому выходу из строя самой батареи. Применяя универсальную микросхему, предназначенную именно для ЗУ компании MAXIM MAX713, можно добиться хороших показателей процесса заряда. Вот как выглядит схема зарядного устройства для шуруповёрта на 18 вольт:
Микросхема MAX713 позволяет заряжать никель-кадмиевые и никель-металл-гидридные аккумуляторы в режиме быстрого заряда, током до 4 C. Она умеет отслеживать параметры батареи и при необходимости снижать ток автоматически. По окончании зарядки схема на основе микросхемы пpaктически не потрeбляет энергии от аккумулятора. Может прерывать свою работу по времени или при сpaбатывании термодатчика.
HL1 служит для индикации питания, а HL2 — для отображения быстрого заряда. Настройка схемы заключается в следующем. Для начала выбирается зарядный ток, обычно его значение составляет величину равную 0,5 C, где C — ёмкость аккумулятора в амперчасах. Вывод PGM1 соединяется с плюсом напряжения питания (+U). Мощность выходного транзистора рассчитывается по формуле P=(Uвх — Uбат)*Iзар, где:
- Uвх – наибольшее напряжение на входе;
- Uбат – напряжение на аккумулятор;
- Iзар – зарядный ток.
Сопротивление R1 и R6 рассчитывается по формулам: R1=(Uвх-5)/5, R6=0.25/Iзар. Выбор времени, через которое зарядный ток отключится, определяется подключением контактов PGM2 и PGM3 к разным выводам. Так, для 22 минут PGM2 оставляется неподключенным, а PGM3 соединяется с +U, для 90 минут PGM3 коммутируется с 16 ногой микросхемы REF. Когда понадобится увеличить время зарядки до 180 минут PGM3 закорачивают с 12 ногой MAX713. Наибольшее время 264 минуты достигается соединением PGM2 со второй ногой, а PGM3 с 12 ногой микросхемы.
Зарядка шуруповёрта без зарядного
Восстановить батарею без помощи ЗУ несложно, но многие не представляют, как. Зарядить аккумулятор шуруповёрта без зарядного устройства можно, используя любой блок питания с постоянным напряжением. Величина его должна быть равной или немного больше значения напряжения заряжаемого аккумулятора. Например, для 12V батареи можно взять выпрямитель для зарядки автомобиля. С помощью клеммных зажимов и проводов подключить, соблюдая полярность, их друг к другу минут на тридцать, при этом контролируя температуру батареи.
А можно провести доработку и устройства питания с большим напряжением, воспользовавшись простым интегральным стабилизатором. Микросхема LM317 позволяет управлять входным сигналом до 40 вольт. Понадобится два стабилизатора: один включается по схеме стабилизации напряжения, а второй — тока. Такую схему можно применить и при переделке ЗУ, не имеющего узлов контроля процесса зарядки.
Работает схема совсем несложно. Во время работы образуется падение напряжения на резисторе R1, его хватает для того, чтобы засветился светодиод. По мере заряда ток в цепи падает. Через некоторое время напряжение на стабилизаторе будет малым и светодиод погаснет. Резистор Rx задаёт наибольший ток. Его мощность выбирается не менее 0,25 ватт. При использовании такой схемы аккумулятор не сможет перегреваться, поскольку устройство автоматически отключается при полном заряде батареи.
Часто можно встретить вредные советы, что зарядить аккумулятор можно, используя диодный мост и лампу накаливания на 100 Вт. Так делать категорически нельзя, потому что отсутствует гальваническая развязка и, кроме cмepтельного поражения электрическим током, существует большая вероятность взрыва батареи.
Портал о стройке
24.03.2019 admin Комментарии Нет комментариев
Популярная микросхема CD4060B (и многие её аналоги «хх4060х») представляет собой удобное сочетание RC или кварцевого мультивибратора с многоразрядным двоичным счетчиком, и, поэтому, используется во многих радиолюбительских конструкциях (даже несмотря на отсутствие отечественного аналога). Ниже приводится описание еще двух схем на данной микросхеме.
На рисунке 1 показана схема, работающая так же, как игральный кубик. Только здесь ничего не нужно подбрасывать, а вместо этого нажимать размыкающую кнопку. На рабочей поверхности расположено семь светодиодов, их расположение соответствует расположению точек на гранях кубика. Светодиоды могут зажигаться в одной из возможных шести комбинациях, в соответствии с изображениями точек на разных гранях кубика. После нажатия кнопки происходит случайный выбор одной из этих шести комбинаций.
А происходит это следующим образом. Кнопка S1, когда находится в своем нормальном замкнутом состоянии, блокирует мультивибратор микросхемы D1. Как только мы отпускаем кнопку мультивибратор начинает работать на достаточно высокой частоте. Состояния выхода счетчика очень быстро меняются, и когда мы отпускаем кнопку, на выходе счетчика оказывается любое, действительно случайное трехразрядное двоичное число от «ООО» до «101». Затем, этот двоичный код преобразуется своеобразным дешифратором на инверторе — транзисторе VT1 и диодах VD1-VD5 в некоторый специальный четырехразрядный код для управления семи светодиодным табло, на котором числа представляются так, как они выглядят на гранях игрального кубика.
Мошенничать здесь не получится, — коды меняются очень быстро, да и дребезг контактов кнопки усиливает степень случайности.
Звуковой сигнализатор на CD4060B
Вторая схема (рисунок 2) представляет собой звуковой сигнализатор, имитирующий звучание механического звонка. Схема состоит из тонального генератора, в качестве которого выступает мультивибратор микросхемы CD4060B, ступенчатого регулятора его тональности (частоты), и выходного каскада, состоящего из транзисторного ключа, нагруженного широкополосной динамической головкой В1 (динамик от карманного приемника).
Импульсы с выхода мультивибратора поступают на базу VT1, в цепи эмиттера которого, через токоограничительный резистор R3 включена динамическая головка.
В то же время импульсы мультивибратора поступают и на двоичный счетчик микросхемы D1. Код с его самых младших (из числа доступных) трех разрядов поступает на управляющие входы мультиплексора D2 (CD4051 — аналог К561КП2), который переключает резисторы R5-R12, работающие в частотозадающей цепи мультивибратора. Получается восемь последовательно снижающихся тонов, которые переключаются быстро и резко, а звук, воспроизводимый динамиком напоминает звучание механического звонка или колокольчика.
В обеих схемах вместо микросхемы 4060 можно использовать аналог, сделанный из двух микросхем — К561ЛЕ5 (или любой другой с числом инверторов не менее 2-х) и счетчика типа К561ИЕ16.
Мультиплексор 4051 можно заменить отечественным К561КП2 (полный аналог). В схеме на рисунке 1 можно использовать любые светодиоды видимого спектра излучения, но желательно сверх яркие, так как так как здесь они подключены непосредственно на выходы КМОП-микросхемы, и через них протекает относительно небольшой ток. При таком токе яркость обычных (АЛ307) может быть недостаточной.
В схеме на рисунке 2 динамик может быть любым, сопротивлением 4-100 От. Изменяя сопротивление R3 можно установить желаемую громкость звучания. Общую тональность можно изменить подбором емкости С2, а тон каждой ступени — подбором соответствующего резистора (R5-R12).
Можно изменить хаpaктер звучания, замедлив скорость изменения тона. Для этого нужно переключить управляющие входы мультиплексора на более старшие разряды счетчика. Например, чтобы получить завывания нужно выводы D2 с выводов 7, 5 и 4 D1 перепаять, соответственно, на выводы 14,13 и 15 D1, или (для медленного завывания) на выводы 1, 2 и 3 микросхемы D1. Умышленно перепутав разряды можно получить разнообразное звучание.
Зарядное устройство аккумулятора шуруповерта
Зарядное устройство для шуруповерта «Интерскол»
Силовую часть зарядного устройства шуроповерта представляет силовой трaнcформатор типа GS-1415 рассчитанный на мощность 25 Ватт.
Со вторичной обмотки трaнcформатора снимается пониженное переменное напряжение номиналом 18В оно следует на диодный мост из 4 диодов VD1-VD4 типа 1N5408, через плавкий пpeдoxpaнитель. Диодный мост . Каждый полупроводниковый элемент 1N5408 рассчитан на прямой ток до трех ампер. Электролитическая емкость C1 сглаживает пульсации появляющиеся в схеме после диодного моста.
Управление реализовано на микросборке HCF4060BE, которая совмещает в себе 14-разрядным счетчиком с компонентами задающего генератора. Она управляет биполярным транзистором типа S9012. Он нагружен на реле типа S3-12A. Таким образом схемотехнически реализован таймер, включающий реле на время заряда аккумуляторной батареи около часа. При включении ЗУ и подсоединения аккумулятора контакты реле находятся в нормально разомкнутом положении. HCF4060BE получает питание через стабилитрон 1N4742A на 12 вольт, т.к с выхода выпрямителя идет около 24 вольт.
При замыкании кнопки «Пуск» напряжение с выпрямителя начинает следовать на стабилитрон через сопротивление R6, затем стабилизированное напряжение идет на 16 вывод U1. Открывается транзистор S9012, которым управляет HCF4060BE. Напряжение через открытые переходы транзистора S9012 следует на обмотку реле. Контакты последнего замыкаются, и аккумулятор начинает заряжаться. Защитный диод VD8 (1N4007) шунтирует реле и защищает VT от скачка обратного напряжения, которое возникнет в момент обесточивания обмотки реле. VD5 не дает разряжаться аккумулятору при отключении сетевого напряжения. С размыканием контактов кнопки «Пуск» ничего не произойдет т.к питание идет через диод VD7 (1N4007), стабилитрон VD6 и гасящий резистор R6. Поэтому микросхема будет получать питание даже после отпускания кнопки.
Читать еще: Реле регулятор 3702 01 схема подключенияСменный типичный аккумулятор от электроинструмента собран из отдельных последовательно соединенных никель-кадмиевых Ni-Cd аккумуляторов, каждый по 1,2 вольта, т.о их 12 штук. Суммарное напряжение такой батареи будет около 14,4 вольта. Кроме того в блок аккумуляторов добавлен датчик температуры — SA1 он приклеен к одной из Ni-Cd батарей и плотно прилегает к ней. Один из выводов терморегулятора подключен к минусу аккумуляторной батареи. Второй вывод подсоединен к отдельному, третьему разъему.
При нажатии кнопки «Пуск» реле замыкает свои контакты, и начинается процесс заряда батареи. Загорается красный светодиод. Через час, реле своими контактами рвет цепь заряда аккумулятора шуроповерта. Загорается зеленый светодиод, а красный тухнет.
Термоконтакт отслеживает температуру батареи и разрывает цепь заряда, если температура выше 45°. Если такое случается раньше чем схема таймера отработает, это говорит об присутствии «эффекта памяти».
Типовые неисправности зарядного устройства шуруповерта
Со временем из-за износа кнопка «Пуск» глюченно сpaбатывает, а иногда и не работает совсем. Также в моей пpaктике вылетал стабилитрон 1N4742A и микросхемы HCF4060BE. Если схема ЗУ исправна и не вызывают подозрения, а заряда не начинается, то необходимо проверить термовыключатель в аккумуляторном блоке, аккуратно разобрав его.
Основой конструкции является регулируемый стабилизатор положительного напряжения. Он допускает работу с током нагрузки до 1,5А, которого вполне достаточно для заряда аккумуляторов.
Переменное напряжение величиной 13В, снимается с вторичной обмотки трaнcформатора, выпрямляется диодным мостом D3SBA40. На его выходе стоит фильтрующий конденсатор С1, который снижает пульсации выпрямленного напряжения. С выпрямителя постоянное напряжение поступает на интегральный стабилизатор, выходное напряжение, которого задается сопротивлением резистора R4 на уровне 14,1В (Зависит от типа АКБ шуруповерта). Датчиком тока зарядки является сопротивление R3, параллельно которому подсоединено подстроечное сопротивление R2, с помощью этого сопротивления задается уровень зарядного тока, который соответствует 0,1 от емкости аккумулятора. На первом этапе батарея заряжается стабильным током, затем, когда зарядный ток станет меньше величины тока ограничения, АКБ будет заряжаться более низким током до напряжения стабилизации DA1.
Датчиком зарядного тока для светодиода HL1 является VD2. В этом случае HL1 будет индицировать ток номиналом до 50 миллиампер. Если в качестве датчика тока использовать R3, то светодиод погаснет при токе 0,6А, что было бы слишком рано. Аккумулятор не успел бы зарядиться. Это устройство можно использовать и для шестивольтовых аккумуляторов.
Радиолюбительская конструкция используется для разряда и заряда NiCd аккумуляторов емкостью 1,2 А*ч. По своей сути — это усовершенствованное типовое ЗУ шуруповерта, в которое внедрена схема контролирующая доразряд и последующий заряд батареи. После подключения батареи к ЗУ стартует процесс разряд батареи током 120 мА до напряжения 10 В, затем аккумулятор начинает заряжаться, током400 мА. Прекращается заряд по достижении напряжения на аккумуляторе шуроповерта 15.2 В или по таймеру через 3.5 ч. (запрограмировано в прошивке МК).
При разряде постоянно светится HL1. В процессе заряда горит светодиод HL2 и мигает с интервалом раз в 5 секунд HL1. После окончания заряда АКБ по достижению верхнего уровня напряжения начинает часто мигать HL1 (2 мигания с паузой 600 мс). Если заряд прекратился по таймеру, то HL1 мигает раз в 600 мс. Если в процессе заряда исчезло питающее напряжение, то таймер стопорится. А микроконтроллер PIC12F675 получает питание от аккумулятора, через диод, внутри транзистора VT2. Пршивка к МК по ссылке выше.
Микросхема hcf4060be и ее аналог
Основой для многих схем самодельных таймеров на логических микросхемах являются многоразрядные счетчики. Обычно это отечественные микросхемы серии К561 К561ИЕ16 и К561ИЕ20. Недавно отечественные радиолюбители обратили внимание на счетчики — мультивибраторы типа CD4060, не имеющие отечественных аналогов. Но букет многоразрядных счетчиков, пригодных для построения различных схем цифровых и аналого-цифровых таймеров этим не ограничивается.
Вот пример, — не имеющая отечественных аналогов микросхема типа CD4521. Слово типа означает, что данная микросхема совсем не обязательно должна быть именно из серии CD, это может быть так же, HCF4521, µPD4521 и многие другие аналоги этого изделия, производимые различными фирмами.
Микросхему CD4521 можно сравнивать с CD4060, — здесь так же есть два инвертора для построения кварцевого или RC-мультивибратора, и многоразрядный счетчик с далеко неполным числом разрядов. Но, главное отличие CD4521 в том, что её двоичный счетчик 24-х разрядный. То есть, максимальный коэффициент деления составляет аж 16777216. Правда, на ножки выведены только Q18, Q19, Q20, Q21, Q22, Q23, Q24, то есть семь старших разрядов. Остальные разряды возможности сообщения с окружающей средой не имеют.
Для создания мультивибратора в CD4521 есть два инвертора. Вход первого из них — вывод 9, а его же выход — вывод 7. Вход второго инвертора — вывод 6, а выход — вывод 4, причем вывод 4 по внутренним цепям связан со входом счетчика. Схема обнуления сделана так, что при подаче логической единицы на вывод 2 не только счетчик сбрасывается, но и происходит блокировка мультивибратора (пока на выводе 2 единица мультивибратор работать не может).
И еще одна интересная деталь, — система питания. Дело в том, что выводы питания разные для счетчика и для инверторов мультивибратора. Питание на счетчик поступает как обычно, на выводы 8 и 16, а цепи питания инверторов выведены на выводы 3 и 5, соответственно. Если вы хотите использовать только счетчик, — входные импульсы подаете на вывод 6, а выводы 4, 7 и 9 не используете.
На рисунке представлена схема бытового таймера, позволяющего устанавливать продолжительность включенного состояния нагрузки от 3 минут до 64 часов. Установка времени производится цифро-аналоговым способом, поскольку она определяется положением ручки переменного резистора R2, работающего в RC-цепи мультивибратора (аналоговая составляющая), и выбором коэффициента пересчета посредством переключателя S3 (цифровая составляющая).
В исходное нулевое состояние счетчик устанавливается кнопкой S1 или цепью С2-R1 при включении питания. При этом на всех выходах счетчика будут логические нули. Следовательно, ноль будет и на том выходе, на который переключен переключатель S3. Между переключателем S3 и положительной шиной питания включен светодиод мощного оптосимистора VS1.
Выходной ток микросхемы CD4521 достаточно высок для того чтобы логическим нулем вызвать сpaбатывание оптопары, включение через неё нагрузки. Оптопара S202SE2 допускает коммутируемую мощность до 3,5 kW (с радиатором) и до 400W без радиатора. Ток через светодиод оптопары ограничивается резистором R6.
Частота импульсов, выpaбатываемых мультивибратором зависит от емкости конденсатора (С4 или С3) и сопротивления R2+R3. Установка времени может быть в часах (от 0,5 часа до 64 часов) или в минутах (от 3 минут до 384 минут). На рисунке переключатель S2 показан в положении минуты. Он только переключает емкость и этим изменяет пределы регулировки частоты мультивибратора.
После того как заданный временной интервал завершается единица возникает на том выходе счетчика, на который переключен S3. Появление логической единицы снижает ток через светодиод оптопары до такого уровня, что нагрузка выключается. Одновременно, происходит открывание диода VD4, который в таком состоянии шунтирует вход первого инвертора мультивибратора, блокируя его работу. Отсчет времени прекращается, а нагрузка выключается.
В таком состоянии схема будет находиться до очередного нажатия и отпускания кнопки S1. Если диод VD4 исключить из схемы, нагрузка будет включаться периодически, через равные интервалы работы и выключенного состояния.
Источник питания микросхемы выполнен по бестрaнcформаторной схеме. На реактивном сопротивлении конденсатора С5 гасится избыток сетевого напряжения. Далее идет выпрямитель на диодах VD2, VD3 и конденсаторе С1. Стабилитрон VD1 держит выпрямленное напряжение на уровне 12V.
Схема, показанная на рисунке, является испытанной рабочей демонстрационной моделью, поэтому печатная плата не разработана (монтаж выполнен на макетке). Её задача показать пpaктический пример применения микросхем типа CD4521.
Точность установки времени сильно зависит от параметров RC-цепи мультивибратора, поэтому, для получения достаточно точных интервалов может потребоваться точный подбор емкостей С4 и С3, так, чтобы при максимальном сопротивлении R2, в показанном на схеме положении S2 частота импульсов на выводе 4 была равна 365 Гц, а в противоположном положении S2 -36 Гц.
Исполнительный каскад на S202SE2 может быть сделан и по любой другой подходящей схеме. Временные интервалы и диапазоны их установки так же можно сделать другими. Источник питания должен выдавать постоянное стабильное напряжение в пределах от 3 до 15V (допустимый диапазон питающего напряжения для CD4521).
На рисунке 2 показан пример использования CD4521 совместно с кварцевым резонатором. Используя стандартный часовой резонатор на 32768 Гц можно получить импульсы, следующие с периодом 8, 16, 32, 64, 128, 256 и 512 секунд. Если эту схему применить в схеме на рисунке 1, то переключателем S3 можно будет устанавливать фиксированные выдержки времени — 4, 8, 16, 32, 64, 128 или 256 секунд.
А если исключить диод VD4 нагрузка будет периодически включаться, с периодом 8, 16, 32, 64, 128, 256 или 512 секунд. С равными интервалами включенного и выключенного состояния. Микросхема может работать с резонаторами до 600 кГц.
Идеальный амперметр что это Идеальный амперметр что это Вы здесь: Главная Уроки начинающим Часть1 - Постоянный ток 7. Измерительные приборы 5. Воздействие...
09 02 2025 0:18:12
Как правильно ковать нож Порядок ковки ножа из сверла в домашних условиях, материалы и инструменты Сложно ли изготовить нож самостоятельно? Если подойти...
08 02 2025 11:38:35
Новый VST-синтезатор Klevgrand Hillman вдохновлён винтажными комбо-органами, струнными машинами и прочими похожими инструментами....
07 02 2025 9:26:12
Как подключить блок плавного пуска Как сделать плавный пуск электроинструмента с обычной розетки. Обычная розетка, если ее немного доработать, может...
06 02 2025 10:37:45
Принцип работы цангового зажима Цанговый патрон: устройство, конструкция, принцип работы и действия зажима Цанговый патрон — это разновидность токарных...
05 02 2025 18:23:52
Резка плитки плиткорезом ручным видео Разбираемся, как правильно резать плитку плиткорезом Ни один способ укладки кафеля не обходится без подрезки. Именно...
04 02 2025 17:52:17
Снегоуборщик PATRIOT Home Garden PHG 65E: обзор, отзывы Снегоуборщик Patriot Home Garden PHG 51 Patriot Home Garden PHG 51 – американский снегоуборщик...
03 02 2025 6:19:52
Как проверить кондер мультиметром Проверка конденсатора мультиметром Конденсатор — незаменимое средство в любой электротехнике. Что он собой представляет,...
02 02 2025 0:35:34
Где разрезать керамогранитную плитку Резка керамогранита без сколов в домашних условиях Керамогранит – один из наиболее твёрдых материалов, применяемых...
01 02 2025 2:14:41
Электросхема сварочного аппарата минимаг 161 Принципиальная схема сварочного инвертора Современные сварочные работы проводятся при применении специальных...
31 01 2025 20:15:23
Как проверить аккумулятор телефона на работоспособность дома Как проверить состояние аккумулятора смартфона? Константин Иванов Неважно, какие...
30 01 2025 6:45:16
Бесплатная VST-библиотека эмбиент-звуков и текстур Spitfire Audio Opia создана совместно с исландским продюсером Оулавюром Арнальдсом....
29 01 2025 4:54:25
Что происходит с интерсколом Решается судьба «Интерскола» Корпорация Positec миллиардера Дона Гао может выкупить бренд производителя электроинструментов...
28 01 2025 2:13:16
Как правильно выставить угол заточки ножа Под каким углом точить нож Умение определить угол заточки ножей и правильно обработать режущую кромку(РК)...
27 01 2025 22:10:11
Как посчитать мощность электроприбора Как посчитать мощность электроприбора Главная О Предприятии Руководство Структура Новости Фотогалерея Видеогалерея...
26 01 2025 22:11:30
Как просверлить камень в домашних условиях Оригинальная кровля и дизайнерские крыши Все о кровле и крышах. Проверенные и новейшие материалы, технологии,...
25 01 2025 11:51:21
Ремонт и обслуживание шиномонтажного оборудования Обслуживание и ремонт шиномонтажных станков Шиномонтажный станок — это непременное оборудование на любом...
24 01 2025 21:13:49
Гост 6394 73 ключи рожковые Гост 6394 73 ключи рожковые Зев (отверстие), конец ключа и размер "под ключ" Предлагаем прочесть документ: Зев (отверстие),...
23 01 2025 7:20:31
Как правильно подобрать автоматический выключатель по нагрузке Выбор номинала автомата защиты Собирая электрощиток или подключая новую крупную бытовую...
22 01 2025 2:36:40
Разбираемся, чем MIDI 2.0 отличается от MIDI 1.0, как изменится жизнь музыкантов и что делать с сотнями старых контроллеров....
21 01 2025 1:38:39
Как найти провода в стене без прибора Как найти скрытую проводку — современные и дедовские методы поиска. Здравствуйте дорогие читатели! В этой статье я...
20 01 2025 11:24:41
Коптильная камера холодного и горячего копчения Коптильная камера: сборка своими руками Изготавливается коптильная камера своими руками из подручных...
19 01 2025 18:50:44
Принцип работы запopного клапана Обратный клапан: виды и принцип работы Обратный клапан — механизм прямого действия, который обеспечивает циркуляцию воды...
18 01 2025 3:49:39
Что такое гальваническое покрытие металла Гальваническое покрытие Содержание статьи Метод покрытия Процесс покрытия Виды покрытий: Покрытие медью Покрытие...
17 01 2025 22:21:16
Где применяется высокопрочный чугун Ковкий чугун Сплав железа и углерода называют чугуном. Мы же посвятим статью ковкому чугуну. Последний, содержится в...
16 01 2025 1:44:26
Искусственный интеллект сервиса StrikeFree Music генерирует уникальную музыку для YouTube. Треки не повторяются никогда, проблем с копирайтами нет....
15 01 2025 18:24:16
Реечный домкрат какой лучше Реечный домкрат какой лучше Реечный домкрат (хай джек,HiJack) предназначен для поддомкрачивания автомобиля. При помощи него...
14 01 2025 23:11:36
Немецкая компания ESI представила один из самых маленьких звуковых интерфейсов в мире. ESI UGM192 пишет звук в 24-бит/192 кГц при размере с пачку сигарет!...
13 01 2025 6:24:25
Ножи для метания чертежи с размерами Нож метательный своими руками. Чертежи метательных ножей, размеры Автор: administation · Опубликовано Январь 31, 2016...
12 01 2025 8:23:16
Снегоуборщик аккумуляторный Greenworks 40V, 30 см, бесщёточный комплект АКБ и ЗУ: обзор, отзывы 8 мифов об аккумуляторной технике. Всё не совсем так, как...
11 01 2025 9:44:22
Выбор ушм 125 с регулировкой оборотов 15 лучших болгарок (УШМ) Критерии выбора хорошей болгарки Диаметр диска Диск – главный расходный материал для УШМ....
10 01 2025 5:52:29
Как подобрать кабель канал для кабеля Как выбрать кабель-канал для монтажа электропроводки В любом цивилизованном доме, офисе, или в помещении...
09 01 2025 17:46:57
Какой провод в удлинителе земля Можно ли определить, какого цвета провод заземления в двухжильном или трехжильном кабеле розетки? Электропровода имеют...
08 01 2025 14:20:56
Выбор генератора для загородного дома Как выбрать генератор для частного дома? Если в загородном коттедже регулярно происходят отключения электричества,...
07 01 2025 6:19:11
Как ноутбук подключить к домашнему кинотеатру Подключение домашнего кинотеатра к ноутбуку Современные портативные персональные компьютеры выступают не...
06 01 2025 15:50:13
Зернодробилка роторная принцип работы Роторная зернодробилка: принцип работы и особенности Роторная зернодробилка – одно из самых популярных устройств для...
05 01 2025 10:40:35
Под каким углом заточить ножницы Как наточить ножницы в домашних условиях? Ножницы – это неотъемлемая составляющая быта каждого человека. Ножницы нужны...
04 01 2025 21:51:54
Как подключить два патрона к одному проводу 3-е занятие Пpaктическая демонстрация параллельного соединения приемников эл.энергии. Д ля проведения 3-го...
03 01 2025 9:25:18
Удивительный гибрид электрогитары и акустики Fender American Acoustasonic Telecaster: американская сборка, инновационный дизайн и технологичность....
02 01 2025 15:13:36
Подключение ресивера к старому телевизору через тюльпан Как подключить цифровое ТВ к старому телевизору В соответствии с новыми правовыми нормами,...
01 01 2025 18:27:56
Как выбрать пылесос для квартиры рейтинг отзывы 15 лучших пылесосов – Рейтинг 2019 года Редкий дом в наше время можно представить без пылесоса. Множество...
31 12 2024 8:13:17
Сорвал грани болта как открутить Как открутить болт или гайку с сорванными гранями При проведении ремонта неизбежны сюрпризы. Оборудование может...
30 12 2024 18:21:12
Механическая обработка деталей из металла Обработка металла Металлы и их сплавы издавна используются человеком для изготовления инструментов и оружия,...
29 12 2024 0:48:55
Принцип работы реле давления воды для насоса Реле давления воды: регулировка и установка своими руками Отрегулированное реле давления воды, за счёт насоса...
28 12 2024 19:21:24
Схема микро юсб разъема Распиновка usb портов и распайка micro USB: схема, цвета проводов В настоящее время все мобильные устройства и настольные...
27 12 2024 14:45:46
Подключение телефонного аппарата к розетке Как установить и подключить телефонную розетку За время развития средств связи создано несколько стандартов...
26 12 2024 19:21:21
Как гнуть оргстекло в домашних условиях Как согнуть оргстекло В нашу жизнь все активнее входят синтетические материалы — это различные пластики, волокна,...
25 12 2024 14:36:25
Размер отверстия под резьбу м10 Диаметр отверстия под метрическую резьбу: таблица размеров по ГОСТ Несмотря на то, что нарезание внутренней резьбы не...
24 12 2024 18:26:22
Как определить сечение медного кабеля Как определить сечение кабеля (провода) по диаметру По идее, диаметр проводников должен соответствовать заявленным...
23 12 2024 5:26:17
Как припаять провода без паяльника Как припаять без паяльника: провод, плату, контакты Для соединения различных сплавов и металлов часто применяется...
22 12 2024 23:57:25
Еще:
Музыка -1 :: Музыка -2 :: Музыка -3 :: Музыка -4 :: Музыка -5 :: Музыка -6 :: Музыка -7 :: Музыка -8 :: Музыка -9 :: Музыка -10 :: Музыка -11 ::