Из чего сделан титан
Титан металл. Свойства титана. Применение титана
Титан — металл фей. По крайней мере, элемент назван в честь царицы этих мифических существ. Титания, как и все ее сородичи, отличилась воздушностью.
Летать феям позволяют не только крылья, но и малый вес. Титан тоже легок. Плотность у элемента самая малая среди металлов. На этом сходство с феями заканчивается и начинается чистая наука.
Химические и физические свойства титана
Титан – элемент серебристо-белого цвета, с выраженным блеском. В бликах металла можно разглядеть и розовый, и синий, и красный. Переливаться всеми цветами радуги – хаpaктерная особенность 22-го элемента таблицы Менделеева .
Его лучение всегда ярко, ведь титан устойчив к коррозии. От нее материал защищен оксидной пленкой. Она формируется на поверхности при стандартных температура.
В итоге, коррозия металлу не страшна ни на воздухе, ни в воде, ни в большинстве агрессивных сред, к примеру, царской водке . Так химики прозвали смесь концентрированных азотной и соляной кислот.
Плавится 22-ый элемент при 1 660-ти градусов Цельсия. Получается, титан – цветной металл тугоплавкой группы. Гореть материал начинает раньше, чем размягчаться.
Белое пламя появляется при 1 200-от градусов. Закипает вещество при 3 260-ти по шкале Цельсия. Плавление элемента делает его вязким. Приходится использовать специальные реагенты, препятствующие налипанию.
Если жидкая масса металла тягучая и клейкая, то в состоянии порошка титан взрывоопасен. Для сpaбатывания «бомбы» достаточно нагрева до 400-от градусов Цельсия. Принимая тепловую энергию, элемент плохо ее передает.
В качестве электропроводника титан тоже не используют. Зато, материал ценят за прочность. В сочетании с малой плотностью и весом, она пригождается во многих отраслях промышленности.
Химически титан довольно активен. Так, или иначе, металл взаимодействует с большинством элементов. Исключения: — инертные газы, литий , натрий, калий, магний , кальций и сера .
Столь малое количество безразличных титану веществ затрудняет процесс получения чистого элемента. Нелегко произвести и сплавы металлов титана. Однако, промышленники научились это делать. Слишком уж высока пpaктическая польза смесей на основе 22-го вещества.
Применение титана
Сборка самолетов и paкет, — вот где в первую очередь пригождается титан. Металл купить необходимо, чтобы повысить жаростойкость и жаропрочность корпусных сплавов . Жаростойкость – сопротивление высоким температурам.
Они, к примеру, при разгоне paкеты в атмосфере неизбежны. Жаропрочность – сохранение в «огненных» обстоятельствах еще и большинства механических свойств сплава. То есть, с титаном эксплуатационные хаpaктеристики деталей не меняются в зависимости от условий внешней среды.
Пригождается и устойчивость 22-го металла к коррозии. Это свойство важно уже не только в деле производства машин. Элемент идет на колбы и прочую посуду для химических лабораторий, становится сырьем для ювелирных украшений .
Сырье не из дешевых. Но, во всех отраслях затраты окупаются сроком службы титановых изделий, их способностью сохранять первозданный вид.
Так, серия посуды питерской фирмы «Нева» «Металл Титан ПК» позволяет использовать при жарке металлические ложки. Тефлон бы они уничтожили, поцарапали. Титановому же покрытию нипочем нападки стали, алюминия.
Это, кстати, касается и украшений. Кольцо из серебра или золота просто поцарапать. Модели из титана остаются гладкими десятилетия. Поэтому 22-ый элемент начали рассматривать, как сырье для обручальных перстней.
Сковорода «Титан Металл» легка, как и посуда с тефлоном. 22-ый элемент лишь немногим тяжелее алюминия. Это вдохновило не только представителей легкой промышленности, но и специалистов автомобилестроения. Не секрет, что в машинах много алюминиевых деталей.
Они нужны для снижения массы трaнcпорта. Но, титан прочнее. Касаемо представительских машин автомобилестроение уже почти полностью перешло на использование 22-го металла.
Детали из титана и его сплавов снижают массу двигателя внутреннего сгорания на 30%. Облегчается и корпус, правда, растет цена. Алюминий, все же, дешевле.
Фирма «Нева Металл Титан», отзывы о которой оставляют, как правило, со знаком плюс, производит посуду. Автомобильные бренды используют титан для машин. Ювелиры придают элементу форму колец, сережек и браслетов. В этой череде перечислений не хватает медицинских компаний.
22-ый металл – сырье для протезов и хирургических инструментов. Продукция почти не имеет пор, поэтому легко стерилизуется. К тому же, титан, будучи легким, выдерживает колоссальные нагрузки. Что еще нужно, ели, к примеру, вместо коленных связок ставится чужеродная деталь?
Отсутствие в материале пор ценится успешными рестораторами. Чистота скальпелей хирурга важна. Но, важна и чистота рабочих поверхностей поваров. Чтобы пища была безопасной, ее разделывают и пропаривают на титановых столах.
Они не царапаются, легко моются. Заведения среднего уровня, как правило, пользуются стальной утварью, но, она уступают в качестве. Поэтому, в ресторанах с Мишленовскими звездами оборудование титановое.
Добыча титана
Элемент входит в 20-ку наиболее распространенных на Земле, находясь ровно посередине рейтинга. По массе коры планеты содержание титана равно 0,57%. На литр морской воды 24-го металла приходится 0,001 миллиграмма. В сланцах и глинах элемента содержится 4,5 килограмма на тонну.
В кислых породах, то есть богатых кремнеземом, на титан приходятся 2,3 килограмма с каждой тысячи. В основных залежах, образовавшихся из магмы, 22-го металла около 9-ти кило на тонну. Меньше всего титана скрывается в ультраосновных породах с 30-процентным содержанием кремнезема – 300 граммов на 1 000 килограммов сырья.
Не смотря на распространенность в природе, чистый титан в ней не встречается. Материалом для получения 100-процентного металла стал его йодит. Термическое разложение вещества провели Аркель и Де Бур. Это голландские химики. Эксперимент удался в 1925-ом году. К 1950-ым запустили массовое производство.
Современники, как правило, добывают титан из его диоксида. Это минерал, называемый рутилом. В нем наименьшее количество сторонних примесей. Походят, так же титанит и ильменит .
При переработке ильменитовых руд остается шлак. Он-то и служит материалом для получения 22-го элемента. На выходе он порист. Приходится вести вторичную переплавку в вакуумных печах с добавлением лигатуры .
Если ведется работа с диоксидом титана, к нему примешивают магний и хлор. Смесь нагревают в вакуумных печах. Температуру поднимают до тех пор, пока все лишние элементы не испарятся. На дне емкостей остается чистый титан. Метод назван магниетермическим.
Отработан и гидридно-кальциевый метод. Он основан на электролизе. Ток высокой силы позволяет разделить гидрид металла на титан и водород. Продолжает применяться и йодитный способ добычи элемента, отработанный в 1925-ом году. Однако, в 21-ом веке он наиболее трудоемкий и дорогой, поэтому начинает забываться.
Цена титана
На металл титан цена устанавливается за килограмм. В начале 2016-го, это около 18-ти долларов США. Мировой рынок 22-го элемента за последний год достиг 7 000 000 тонн. Крупнейшие поставщики – Россия и Китай.
Это связано с разведанными в них и пригодными для разработки запасами. Во втором полугодии 2015-го спрос на титановые слитки и листы начал снижаться.
Реализуют металл и в виде проволоки, различных деталей, к примеру, труб. Они гораздо дешевле биржевых расценок. Но, нужно учитывать, что в слитках идет чистый титан, а в изделиях использованы сплавы на его основе.
Содержание 22-го элемента в них, порой, не превышает 20%. Примерно настолько же в этом году эксперты прогнозируют рост стоимости металла. Он нужен в оборонном комплексе, который многие страны наращивают в связи с непростой ситуацией на мировой политической арене.
Хаpaктеристика и применение титана и сплавов на его основе
Титан был первоначально назван «грегоритом» британским химиком преподобным Уильямом Грегором, который открыл его в 1791 году. Затем титан был независимо открыт немецким химиком М. Х. Клапротом в 1793 году. Он назвал его титаном в честь титанов из греческой мифологии — «воплощение естественной силы». Только в 1797 году Клапрот обнаружил, что его титан был элементом, ранее открытым Грегором.
Хаpaктеристики и свойства
Титан — это химический элемент с символом Ti и атомным номером 22. Это блестящий металл с серебристым цветом, низкой плотностью и высокой прочностью. Он устойчив к коррозии в морской воде и хлоре.
Элемент встречается в ряде месторождений полезных ископаемых, главным образом рутила и ильменита, которые широко распространены в земной коре и литосфере.
Титан используется для производства прочных лёгких сплавов. Двумя наиболее полезными свойствами металла являются коррозионная стойкость и отношение твёрдости к плотности, самое высокое из любого металлического элемента. В своём нелегированном состоянии этот металл столь же прочен, как некоторые стали, но менее плотный.
Физические свойства металла
Это прочный металл с низкой плотностью, довольно пластичный (особенно в бескислородной среде), блестящий и металлоидно-белый. Относительно высокая температура плавления более 1650 °C (или 3000 °F) делает его полезным в качестве тугоплавкого металла. Он парамагнитный и имеет довольно низкую электрическую и теплопроводность.
По шкале Мооса твёрдость титана равняется 6. По этому показателю он немного уступает закалённой стали и вольфраму.
Коммерчески чистые (99,2%) титаны имеют предельную прочность на разрыв около 434 МПа, что соответствует обычным низкосортным стальным сплавам, но при этом титан гораздо легче.
Химические свойства титана
Как алюминий и магний, титан и его сплавы сразу же окисляются при воздействии воздуха. Он медленно реагирует с водой и воздухом при температуре окружающей среды, потому что образует пассивное оксидное покрытие, которое защищает объёмный металл от дальнейшего окисления.
Атмосферная пассивация даёт титану отличную стойкость к коррозии почти эквивалентную платине. Титан способен противостоять атаке разбавленных серных и соляных кислот, растворов хлорида и большинства органических кислот.
Титан является одним из немногих элементов, которые сгорают в чистом азоте, реагируя при 800° C (1470° F) с образованием нитрида титана. Из-за своей высокой реакционной способности с кислородом, азотом и некоторыми другими газами титановые нити применяются в титановых сублимационных насосах в качестве поглотителей для этих газов. Такие насосы недороги и надёжно производят чрезвычайно низкое давление в системах сверхвысокого вакуума.
Обычными титаносодержащими минералами являются анатаз, брукит, ильменит, перовскит, рутил и титанит (сфен). Из этих минералов только рутил и ильменит имеют экономическое значение, но даже их трудно найти в высоких концентрациях.
Титан содержится в метеоритах и он был обнаружен на Солнце и звёздах M-типа с температурой поверхности 3200° C (5790° F).
Известные в настоящее время способы извлечения титана из различных руд являются трудоёмкими и дорогостоящими.
Производство и изготовление
В настоящее время разработаны и используются около 50 сортов титана и титановых сплавов. На сегодняшний день признаётся 31 класс титанового металла и сплавов, из которых классы 1−4 являются коммерчески чистыми (нелегированными). Они отличаются прочностью на разрыв в зависимости от содержания кислорода, причём класс 1 является наиболее пластичным (самая низкая прочность на разрыв с содержанием кислорода 0,18%), а класс 4 — наименее пластичный (максимальная прочность на разрыв с содержанием кислорода 0,40%).
Оставшиеся классы представляют собой сплавы, каждый из которых обладает конкретными свойствами:
- пластичность;
- прочность;
- твёрдость;
- электросопротивление;
- удельная коррозионная стойкость и их комбинации.
В дополнение к данным спецификациям титановые сплавы также изготавливаются для соответствия требованиям аэрокосмической и военной техники (SAE-AMS, MIL-T), стандартам ISO и спецификациям по конкретным странам, а также требованиям конечных пользователей для аэрокосмических, военных, медицинских и промышленных применений.
Коммерчески чистый плоский продукт (лист, плита) может быть легко сформирован, но обработка должна учитывать тот факт, что металл имеет «память» и тенденцию к возврату назад. Особенно это касается некоторых высокопрочных сплавов.
Титан часто используется для изготовления сплавов:
- с алюминием;
- с ванадием;
- с медью (для затвердевания);
- с железом;
- с марганцем;
- с молибденом и другими металлами.
Области применения
Титановые сплавы в форме листа, плиты, стержней, проволоки, отливки находят применение на промышленных, аэрокосмических, рекреационных и развивающихся рынках. Порошковый титан используется в пиротехнике как источник ярких горящих частиц.
Поскольку сплавы титана имеют высокое отношение прочности на разрыв к плотности, высокую коррозионную стойкость, устойчивость к усталости, высокую стойкость против трещин и способность выдерживать умеренно высокие температуры, они используются в самолётах, при бронировании, в морских кораблях, космических кораблях и paкетах.
Для этих применений титан легирован алюминием, цирконием, никелем, ванадием и другими элементами для производства различных компонентов, включая критические конструктивные элементы, огневые стены, шасси, выхлопные трубы (вертолёты) и гидравлические системы. Фактически около двух третей произведённого титанового металла используется в авиационных двигателях и рамах.
Поскольку сплавы титана устойчивы к коррозии морской водой, они используются для изготовления гребных валов, оснастки теплообменников и т. д. Эти сплавы используются в корпусах и компонентах устройств наблюдения и мониторинга океана для науки и военных.
Удельные сплавы применяются в скважинных и нефтяных скважинах и никелевой гидрометаллургии для их высокой прочности. Целлюлозно-бумажная промышленность использует титан в технологическом оборудовании, подверженном воздействию агрессивных сред, таких как гипохлорит натрия или влажный хлорный газ (в отбеливании). Другие применения включают ультразвуковую сварку, волновую пайку.
Кроме того, эти сплавы используются в автомобилях, особенно в автомобильных и мотоциклетных гонках, где крайне важны низкий вес, высокая прочность и жёсткость.
Титан используется во многих спортивных товарах: теннисные paкетки, клюшки для гольфа, валы из лакросса; крикет, хоккей, лакросс и футбольные шлемы, а также велосипедные рамы и компоненты.
Благодаря своей долговечности титан стал более популярным для дизайнерских ювелирных изделий (в частности, титановых колец). Его инертность делает его хорошим выбором для людей с аллергией или тех, кто будет носить украшения в таких средах, как плавательные бассейны. Титан также легирован золотом для производства сплава, который может быть продан как 24-каратное золото, потому что 1% легированного Ti недостаточно, чтобы потребовать меньшую отметку. Полученный сплав представляет собой примерно твёрдость 14-каратного золота и более прочен, чем чистое 24-каратное золото.
Меры предосторожности
Титан является нетоксичным даже в больших дозах. В виде порошка или в виде металлической стружки, он представляет собой серьёзную опасность пожара и, при нагревании на воздухе, опасность взрыва.
Свойства и применение титановых сплавов
Ниже представлен обзор наиболее часто встречающихся титановых сплавов, которые делятся на классы, их свойства, преимущества и промышленные применения.
7 класс
Класс 7 механически и физически эквивалентен классу 2 чистого титана, за исключением добавления промежуточного элемента палладия, что делает его сплавом. Он обладает превосходной свариваемостью и эластичностью, наиболее коррозионной стойкостью из всех сплавов этого типа.
Читать еще: Как выглядит игольчатый подшипникКласс 7 используется в химических процессах и компонентах производственного оборудования.
11 класс
Класс 11 очень похож на класс 1, за исключением добавления палладия для повышения коррозионной стойкости, что делает его сплавом.
Другие полезные свойства включают оптимальную пластичность, прочность, ударную вязкость и отличную свариваемость. Этот сплав можно использовать особенно в тех случаях, когда коррозия вызывает проблемы:
- химическая обработка;
- производство хлоратов;
- опреснение;
- морские применения.
Ti 6Al-4V, класс 5
Сплав Ti 6Al-4V, или титан 5 класса, наиболее часто используется. На его долю приходится 50% общего потрeбления титана во всём мире.
Удобство использования заключается в его многочисленных преимуществах. Ti 6Al-4V может подвергаться термообработке для повышения его прочности. Этот сплав обладает высокой прочностью при малой массе.
Это лучший сплав для использования в нескольких отраслях промышленности, таких как аэрокосмическая, медицинская, морская и химическая переpaбатывающая промышленность. Его можно использовать при создании:
- авиационных турбин;
- компонентов двигателя;
- конструктивных элементов самолёта;
- аэрокосмических крепёжных изделий;
- высокопроизводительных автоматических деталей;
- спортивного оборудования.
Ti 6AL-4V ELI, класс 23
Класс 23 — хирургический титан. Сплав Ti 6AL-4V ELI, или класс 23, является версией более высокой чистоты Ti 6Al-4V. Он может быть изготовлен из рулонов, нитей, проводов или плоских проводов. Это лучший выбор для любой ситуации, когда требуется сочетание высокой прочности, малой массы, хорошей коррозионной стойкости и высокой вязкости. Он обладает превосходной устойчивостью к повреждениям.
Он может использоваться в биомедицинских применениях, таких как имплантируемые компоненты из-за его биосовместимости, хорошей усталостной прочности. Его также можно использовать в хирургических процеДypaх для изготовления таких конструкций:
- ортопедические штифты и винты;
- зажимы для лигатуры;
- хирургические скобы;
- пружины;
- ортодонтические приборы;
- криогенные сосуды;
- устройства фиксации кости.
12 класс
Титан класса 12 обладает отличной высококачественной свариваемостью. Это высокопрочный сплав, который обеспечивает хорошую прочность при высоких температурах. Титан класса 12 обладает хаpaктеристиками, подобными нержавеющим сталям серии 300.
Его способность формироваться различными способами делает его полезным во многих приложениях. Высокая коррозионная стойкость этого сплава также делает его неоценимым для производственного оборудования. Класс 12 можно использовать в следующих отраслях:
- теплообменники;
- гидрометаллургические применения;
- химическое производство с повышенной температурой;
- морские и воздушные компоненты.
Ti 5Al-2,5Sn
Ti 5Al-2,5Sn — это сплав, который может обеспечить хорошую свариваемость с устойчивостью. Он также обладает высокой температурной стабильностью и высокой прочностью.
Ti 5Al-2,5Sn в основном используется в авиационной сфере, а также в криогенных установках.
Титан Ti
Монумент в честь покорителей космоса воздвигнут в Москве в 1964 г. Почти семь лет (1958-1964) ушло на проектирование и сооружение этого обелиска. Авторам пришлось решать не только архитектурнохудожественные, но и технические задачи. Первой из них был выбор материалов, в том числе и облицовочных. После долгих экспериментов остановились на отполированных до блеска титановых листах.
Действительно, по многим хаpaктеристикам, и прежде всего по коррозионной стойкости, титан превосходит подавляющее большинство металлов и сплавов. Иногда (особенно в популярной литературе) титан называют вечным металлом. Но расскажем сначала об истории этого элемента.
Окисел или не окисел?
До 1795 г. элемент № 22 назывался «менакином». Так назвал его в 1791 г. английский химик и минералог Уильям Грегор, открывший новый элемент в минерале менаканите (не ищите это название в современных минералогических справочниках — менаканит тоже переименован, сейчас он называется ильменитом).
Спустя четыре года после открытия Грегора немецкий химик Мартин Клапрот обнаружил новый химический элемент в другом минерале — рутиле — ив честь царицы эльфов Титании (германская мифология) назвал его титаном.
По другой версии название элемента происходит от титанов, могучих сыновей богини земли — Гeи (греческая мифология).
В 1797 г. выяснилось, что Грегор и Клапрот открыли один и тот же элемент, и хотя Грегор сделал это раньше, за новым элементом утвердилось имя, данное ему Клапротом.
Но ни Грегору, ни Клапроту не удалось получить элементный титан. Выделенный ими белый кристаллический порошок был двуокисью титана TiO2. Восстановить этот окисел, выделить из пего чистый металл долгое время не удавалось никому из химиков.
В 1823 г. английский ученый У. Волластон сообщил, что кристаллы, обнаруженные им в металлургических шлаках завода «Мертир-Тидвиль», — не что иное, как чистый титан. А спустя 33 года известный немецкий химик Ф. Вёлер доказал, что и эти кристаллы были опять-таки соединением титана, на этот раз — металлоподобным карбонитридом.
Много лет считалось, что металлический титан впервые был получен Берцелиусом в 1825 г. при восстановлении фтортитаната калия металлическим натрием. Однако сегодня, сравнивая свойства титана и продукта, полученного Берцелиусом, можно утверждать, что президент Шведской академии наук ошибался, ибо чистый titabnum быстро растворяется в плавиковой кислоте (в отличие от многих других кислот), а металлический титан Берцелиуса успешно сопротивлялся ее действию.
В действительности Ti был впервые получен лишь в 1875 г. русским ученым Д. К. Кирилловым. Результаты этой работы опубликованы в его брошюре «Исследования над титаном». Но работа малоизвестного русского ученого осталась незамеченной. Еще через 12 лет довольно чистый продукт — около 95% титана — получили соотечественники Берцелиуса, известные химики Л. Нильсон и О. Петерсон, восстанавливавшие четыреххлористый титан металлическим натрием в стальной герметической бомбе.
В 1895 г. французский химик А. Муассан, восстанавливая двуокись титана углеродом в дуговой печи и подвергая полученный материал двукратному рафинированию, получил титан, содержавший всего 2% примесей, в основном углерода. Наконец, в 1910 г. американский химик М. Хантер, усовершенствовав способ Нильсона и Петерсона, сумел получить несколько граммов титана чистотой около 99%. Именно поэтому в большинстве книг приоритет получения металлического титана приписывается Хантеру, а не Кириллову, Нильсону или Муассану.
Однако ни Хантер, ни его современники не предсказывали титану большого будущего. Всего несколько десятых процента примесей содержалось в металле, но эти примеси делали титан хрупким, непрочным, непригодным к механической обработке. Поэтому некоторые соединения титана нашли применение раньше, чем сам металл. Четыреххлористый Ti, например, широко использовали в первую мировую войну для создания дымовых завес.
№22 в медицине
В 1908 г. в США и Норвегии началось изготовление белил не из соединений свинца и цинка, как делалось прежде, а из двуокиси титана. Такими белилами можно окрасить в несколько раз большую поверхность, чем тем же количеством свинцовых или цинковых белил. К тому же у титановых белил больше отражательная способность, они не ядовиты и не темнеют под действием сероводорода. В медицинской литературе описан случай, когда человек за один раз «принял» 460 г двуокиси титана! (Интересно, с чем он ее спутал?) «Любитель» двуокиси титана не испытал при этом никаких болезненных ощущений. TiO2 входит в состав некоторых медицинских препаратов, в частности мазей против кожных болезней.
Однако не медицина, а лакокрасочная промышленность потрeбляет наибольшие количества TiO2. Мировое производство этого соединения намного превысило полмиллиона тонн в год. Эмали на основе двуокиси титана широко используют в качестве защитных и декоративных покрытий по металлу и дереву в судостроении, строительстве и машиностроении. Срок службы сооружений и деталей при этом значительно повышается. Титановыми белилами окрашивают ткани, кожу и другие материалы.
Ti в промышленности
Двуокись титана входит в состав фарфоровых масс, тугоплавких стекол, керамических материалов с высокой диэлектрической проницаемостью. Как наполнитель, повышающий прочность и термостойкость, ее вводят в резиновые смеси. Однако все достоинства соединений титана кажутся несущественными на фоне уникальных свойств чистого металлического титана.
Элементный титан
В 1925 г. голландские ученые ван Аркель и де Бур иодидным способом (о нем — ниже) получили титан высокой степени чистоты — 99,9%. В отличие от титана, полученного Хантером, он обладал пластичностью: его можно было ковать на холоде, прокатывать в листы, ленту, проволоку и даже тончайшую фольгу. Но даже не это главное. Исследования физикохимических свойств металлического титана приводили к почти фантастическим результатам. Оказалось, например, что титан, будучи почти вдвое легче железа (плотность титана 4,5 г/см 3 ), по прочности превосходит многие стали. Сравнение с алюминием тоже оказалось в пользу титана: титан всего в полтора раза тяжелее алюминия, но зато в шесть раз прочнее и, что особенно важно, он сохраняет свою прочность при температурах до 500°С (а при добавке легирующих элементов — до 650°С), в то время как прочность алюминиевых и магниевых сплавов резко падает уже при 300°С.
Титан обладает и значительной твердостью: он в 12 раз тверже алюминия, в 4 раза — железа и меди. Еще одна важная хаpaктеристика металла — предел текучести. Чем он выше, тем лучше детали из этого металла сопротивляются эксплуатационным нагрузкам, тем дольше они сохраняют свои формы и размеры. Предел текучести у титана почти в 18 раз выше, чем у алюминия.
В отличие от большинства металлов титан обладает значительным электросопротивлением: если электропроводность серебра принять за 100, то электропроводность меди равна 94, алюминия — 60, железа и платины — 15, а титана — всего 3,8. Вряд ли нужно объяснять, что это свойство, как и немагнитность титана, представляет интерес для радиоэлектроники и электротехники.
Замечательна устойчивость титана против коррозии. На пластинке из этого металла за 10 лет пребывания в морской воде не появилось и следов коррозии. Из титановых сплавов сделаны несущие винты современных тяжелых вертолетов. Рули поворота, элероны и некоторые другие ответственные детали сверхзвуковых самолетов тоже изготовлены из этих сплавов. На многих химических производствах сегодня можно встретить целые аппараты и колонны, выполненные из титана.
Как получают титан
Цена — вот что еще тормозит производство и потрeбление титана. Собственно, высокая стоимость — не врожденный порок титана. В земной коре его много — 0,63%. Все еще высокая цена титана — следствие сложности извлечения его из руд. Объясняется она высоким сродством титана ко многим элементам и прочностью химических связей в его природных соединениях. Отсюда — сложности технологии. Вот как выглядит магниетермический способ производства титана, разработанный в 1940 г. американским ученым В. Кроллем.
Двуокись титана с помощью хлора (в присутствии углерода) переводят в четыреххлористый титан:
Процесс идет в шахтных электропечах при 800-1250°С. Другой вариант — хлорирование в расплаве солей щелочных металлов NaCl и KCl Следующая операция (в одинаковой мере важная и трудоемкая) — очистка TiCl4 от примесей — проводится разными способами и веществами. Четыреххлористый титан в обычных условиях представляет собой жидкость с температурой кипения 136°С.
Разорвать связь титана с хлором легче, чем с кислородом. Это можно сделать с помощью магния по реакции
Эта реакция идет в стальных реакторах при 900°С. В результате образуется так называемая титановая губка, пропитанная магнием и хлоридом магния. Их испаряют в герметичном вакуумном аппарате при 950°С, а титановую губку затем спекают или переплавляют в компактный металл.
Натриетермический метод получения металлического титана в принципе мало чем отличается от магниетермического. Эти два метода наиболее широко применяются в промышленности. Для получения более чистого титана и поныне используется иодидный метод, предложенный ван Аркелем и де Буром. Металлотермический губчатый титан превращают в иодид TiI4, который затем возгоняют в вакууме. На своем пути пары иодида титапа встречают раскаленную до 1400°С титановую проволоку. При этом иодид разлагается, и на проволоке нарастает слой чистого титана. Этот метод производства титана малопроизводителен и дорог, поэтому в промышленности он применяется крайне ограниченно.
Несмотря на трудоемкость и энергоемкость производства титана, оно уже стало одной из важнейших подотраслей цветной металлургии. Мировое производство титана развивается очень быстрыми темпами. Об этом можно судить даже по тем обрывочным сведениям, которые попадают в печать.
Известно, что в 1948 г. в мире было выплавлено лишь 2 т титана, а спустя 9 лет — уже 20 тыс. т. Значит, в 1957 г. 20 тыс. т титана приходилось на все страны, а в 1980 г. только США потрeбляли. 24,4 тыс. т. титана. Еще недавно, кажется, титан называли редким металлом — сейчас он важнейший конструкционный материал. Объясняется это только одним: редким сочетанием полезных свойств элемента № 22. И, естественно, потребностями техники.
Роль титана как конструкционного материала, основы высокопрочных сплавов для авиации, судостроения и paкетной техники, быстро возрастает. Именно в сплавы идет большая часть выплавляемого в мире титана. Широко известен сплав для авиационной промышленности, состоящий из 90% титана, 6% алюминия и 4% ванадия. В 1976 г. в американской печати появились сообщения о новом сплаве того же назначения: 85% титана, 10% ванадия, 3% алюминия и 2% железа. Утверждают, что этот сплав не только лучше, но и экономичнее.
А вообще в титановые сплавы входят очень многие элементы, вплоть до платины и палладия. Последние (в количестве 0,1-0,2%) повышают и без того высокую химическую стойкость титановых сплавов.
Прочность титана повышают и такие «легирующие добавки», как азот и кислород. Но вместе с прочностью они повышают твердость и, главное, хрупкость титана, поэтому их содержание строжайше регламентируется: в сплав допускается не более 0,15% кислорода и 0,05% азота.
Несмотря на то что титан дорог, замена им более дешевых материалов во многих случаях оказывается экономически выгодной. Вот хаpaктерный пример. Корпус химического аппарата, изготовленный из нержавеющей стали, стоит 150 рублей, а из титанового сплава — 600 рублей. Но при этом стальной реактор служит лишь 6 месяцев, а титановый — 10 лет. Прибавьте затраты на замену стальных реакторов, вынужденные простои оборудования — и станет очевидно, что применять дорогостоящий титан бывает выгоднее, чем сталь.
Значительные количества титана использует металлургия. Существуют сотни марок сталей и других сплавов, в состав которых титан входит как легирующая добавка. Его вводят для улучшения структуры металлов, увеличения прочности и коррозийной стойкости.
Некоторые ядерные реакции должны совершаться в почти абсолютной пустоте. Ртутными насосами разрежение может быть доведено до нескольких миллиардных долей атмосферы. Но этого недостаточно, а ртутные насосы на большее неспособны. Дальнейшая откачка воздуха осуществляется уже особыми титановыми насосами. Кроме того, для достижения еще большего разрежения по внутренней поверхности камеры, где протекают реакции, распыляют мелкодисперсный титан.
Титан часто называют металлом будущего. Факты, которыми уже сейчас располагают наука и техника, убеждают, что это не совсем так — титан уже стал металлом настоящего.
- ВСЕ ПОЗНАЕТСЯ В СРАВНЕНИИ. Лишь три технически важных металла — алюминий, железо и магний — распространены в природе больше, чем титан. Количество титана в земной коре в несколько раз превышает запасы меди, цинка, свинца, золота, серебра, платины, хрома, вольфрама, ртути, молибдена, висмута, сурьмы, никеля и олова, вместе взятых.
- МИНЕРАЛЫ ТИТАНА. Известно около 70 минералов титана, в которых он находится в виде двуокиси или солеи титановой кислоты. Наибольшее пpaктическое значение имеют ильменит, рутил, перовскит и сфен. Ильменит — метатитанат железа FeTiO3 — содержит 52,65% TiO2. Название этого минерала связано с тем, что он был найден на Урале в Ильменских горах. Крупнейшие россыпи ильменитовых песков имеются в Индии. Другой важнейший минерал — рутил представляет собой двуокись титана. Промышленное значение имеют также титаномагнетиты — природная смесь ильменита с минералами железа. Богатые месторождения титановых руд есть в СССР, США, Индии, Норвегии, Канаде, Австралии и других странах. Не так давно геологи открыли в Северном Прибайкалье новый титансодержащий минерал, который был назван ландауитом в честь советского физика академика Л. Д. Ландау. Всего на земном шаре известно более 150 значительных рудных и россыпных месторождений титана.
21 интересный факт про титан
Титан — это удивительный металл. Он помогает человеку достичь невиданных высот в различных сферах жизни. Его любят и почитают за прочность, легкость и долгие годы службы. Благодаря титану человек смог пройти сквозь звуковой барьер, и ворваться в Космос.
1. Металл, который впоследствии назвали титан, открыли двое ученых — англичанин Уильям Грегор и немец Мартин Грегор Клапрот. Ученые работали параллельно, и между собой не пересекались. Разница между открытиями составляет 6 лет. Уильям Грегор дал своему открытию название — менакин. Более чем через 30 лет был получен первый сплав титана, который оказался чрезвычайно хрупким, и не мог нигде использоваться. Считается, что лишь в 1925 году был выделен титан в чистом виде, который стал одним из самых востребованных в промышленности металлов. Доказано, что и российский ученый Кириллов в 1875 году сумел добыть чистый титан. Он опубликовал брошюру, в которой подробно описал свою работу. Однако исследования малоизвестного россиянина остались незамеченными.
2. Название металла происходит от греческого слова «chroma», что в переводе означает краска.
3. Самый твердый металл в мире — это и есть титан.
4. Атомный вес титана составляет 47, 88 а.е.м, порядковый номер в химической таблице Менделеева — 22. Внешне он очень похож на сталь.
5. Существует несколько версий, почему металл получил такое название. Согласно одной теории, его назвали в честь Титанов, бесстрашных сверхъестественных существ. По другой версии, название пошло от Титании, королевы фей.
6. Титан может расплавиться только при температуре выше 3200 градусов. А закипает он при температуре 3300 градусов.
7. Металл замыкает десятку лидеров «Самых распространенных металлов в природе». Большие залежи обнаружены в ЮАР, Китае и России, немало титана в Японии, Индии, на Украине.
8. Крупнейший производитель самого твердого металла в мире является российское предприятие «ВСМПО-Ависма», которое удовлетворяет треть мировых потребностей в этом металле.
9. В земле титана большое количество, однако, извлечь его из недр стоит немалых денег. Для выработки используют иодидный метод, автором которого считается Ван Аркель де Бур
10. Общее количество мирового запаса титанов насчитывает более 700 миллионов тонн. Если темпы добычи останутся прежними, титана хватит еще на 150-160 лет.
11. Механическая плотность металла в 6 раз больше, чем у алюминия, в 2 раза выше, чем у железа. Он может соединиться с кислородом, водородом, азотом. В паре с углеродом металл образует невероятно твердые карбиды. Плотность титана составляет 7200кг/м3.
12. Теплопроводность титана в 4 раза меньше, чем у железа, и в 13 раз — чем у алюминия.
13. Титан активно используют в военной сфере, медицине, ювелирном деле. Ему дали неофициальное название «металл будущего». Многие говорят, что он помогает превратить мечту в реальность. Сегодня основным потребителем титановых изделий является авиастроение. Конструкция современного летательного аппарата может содержать до 20 тонн титанового сплава.
14. Этот металл имеет небольшую плотность, что важно в судостроительной сфере. Изделия из титана легкие, а значит, снижается вес корабля, увеличивается его маневренность, скорость, дальность хода. Если корпус корабля обшить титаном, его не нужно будет красить много лет — титан не ржавеет в морской воде (коррозийная стойкость). Чаще всего этот металл в судостроении используют для изготовления турбинных двигателей, паровых котлов, конденсаторных труб.
15. Этот металл очень востребован в медицинской отрасли. Из титана делают большинство хирургических инструментов — легких и удобных. Титан превосходно «сочетается» с организмом человека. Медики назвали этот процесс «настоящее родство». Конструкции из титана безопасны для мышц и костей, редко вызывают аллергическую реакцию, не разрушаются под воздействием жидкости в организме. Протезы из титана стойкие, выдерживают огромные физические нагрузки.
16. В естественной среде хром в чистом виде не встречается, а только в виде хромистого железняка, двойного оксида.
17. Титан немагнитный и не очень хорош при проведении тепла или электричества.
18. Даже в больших дозах титан остается нетоксичным и не имеет никакой естественной роли внутри человеческого организма, обычно проходя через него, не будучи поглощенным.
19. Около 95% всего титана используется для получения соединения диоксида титана, который является очень ярким и преломляющим белым пигментом, который используется в красках, пластмассах, зубной пасте, солнцезащитных кремах, спортивном инвентаре и бумаге.
20. Титан присутствует в метеоритах, солнце и других звездах.
21. В человеческом организме содержится до 20 мг титана. Больше всего титана в селезенке, надпочечниках и щитовидной железе. В этих органах содержание элемента № 22 с возрастом не изменяется, но в легких за 65 лет жизни оно возрастает более чем в 100 раз. Из представителей флоры богата титаном водоросль кладофора: содержание в ней этого элемента превышает 0,03%.
Ваш Промблогер №1 Игорь (ZAVODFOTO)! Подписывайтесь на мой канал, я Вам ещё много чего интересного покажу: https://zen.yandex.ru/zavodfoto
Р. S. Уважаемые собственники и акционеры, представители пресс-служб компаний, отделы маркетинга и другие заинтересованные лица, если на Вашем предприятие есть, что показать — «Как это делается и почему именно так!», смело приглашайте в гости. Для этого пишите мне сюда: akciirosta@yandex.ru Берите пример с лидеров!
На данный момент я уже лично посетил более 400 предприятий, а вот и ссылки на все мои промрепортажи:
Я всегда рад новым друзьям, добавляйтесь и читайте меня в:
Металл титан
Основные сведения
История открытия
Свойства титана
В периодической системе элементов Д. И. Менделеева Ti расположен в IV группе 4-го периода под номером 22. В важнейших и наиболее устойчивых соединениях металл четырехвалентен. По внешнему виду похож на сталь. Титан относится к переходным элементам. Данный металл плавится при довольно высокой температуре (1668±4 °С) и кипит при 3300 °С, скрытая теплота плавления и испарения почти в два раза больше, чем у железа.
Известны две аллотропические модификации титана (две разновидности данного металла, имеющие одинаковый химический состав, но различное строение и свойства). Низкотемпературная альфа-модификация, существующая до 882,5 °С и высокотемпературная бетта-модификация, устойчивая от 882,5 °С и до температуры плавления.
По плотности и удельной теплоемкости титан занимает промежуточное место между двумя основными конструкционными металлами: алюминием и железом. Стоит также отметить, что его механическая прочность примерно вдвое больше, чем чистого железа, и почти в шесть раз выше, чем алюминия. Но указанный материал может активно поглощать кислород, азот и водород, которые резко снижают пластические свойства металла. С углеродом титан образует тугоплавкие карбиды, обладающие высокой твердостью.
Титан обладает низкой теплопроводностью, которая в 13 раз меньше теплопроводности алюминия и в 4 раза — железа. Коэффициент термического расширения при комнатной температуре сравнительно мал, с повышением температуры он возрастает.
Модули упругости титана невелики и обнаруживают существенную анизотропию. Модули упругости хаpaктеризуют способность материала упруго деформироваться при приложении к нему силы. Анизотропия заключается в различии свойств упругости в зависимости от направления действия силы. С повышением температуры до 350 °С модули упругости уменьшаются почти по линейному закону. Небольшое значение модулей упругости Ti — существенный его недостаток, т.к. в некоторых случаях для получения достаточно жестких конструкций приходится применять большие сечения изделий по сравнению с теми, которые следуют из условий прочности.
Титан имеет довольно высокое удельное электросопротивление, которое в зависимости от содержания примесей колeблется в пределах от 42·10 -8 до 80·10 -6 Ом·см. При температурах ниже 0,45 К он становится сверхпроводником.
Титан — парамагнитный металл. Обычно у парамагнитных веществ магнитная восприимчивость при нагревании уменьшается. Магнитная восприимчивость хаpaктеризует связь между намагниченностью вещества и магнитным полем в этом веществе. Данный материал составляет исключение из этого правила — его восприимчивость существенно увеличивается с температурой.
Физические и механические свойства
Химические свойства
Марки титана и сплавов
Наиболее распространенными марками титана являются ВТ1-0, ВТ1-00, ВТ1-00св. Титан указанных марок называется техническим. Данные марки не содержат в своем составе легирующие элементы, только незначительное количество примесей. Содержание Ti в марке ВТ1-0 составляет приблизительно 99,24-99,7%, в ВТ1-00 — 99,58-99,9%, ВТ1-00св — 99,39-99,9%. ВТ1-0, ВТ1-00 поставляется в виде листов, плит, прутков и труб. Проволока чаще всего используется для различных сварочных целей и производится из марки ВТ1-00св.
В настоящее время известно довольно большое число серийных титановых сплавов, отличающихся по химическому составу, механическим и технологическим свойствам. Наиболее распространенные легирующие элементы в таких материалах: алюминий, ванадий, молибден, марганец, хром, кремний, олово, цирконий, железо.
Титановый сплав ВТ5 содержит 5% алюминия. Он отличается более высокими прочностными свойствами по сравнению с титаном, но его технологичность невелика. Сплав куется, прокатывается, штампуется и хорошо сваривается. Из марки ВТ5 получают титановые прутки (круги), проволоку и трубы, а также листы. Его применяют при изготовлении деталей, работающих при температуре до 400 °С.
Сплав титана ВТ5-1 помимо 5% алюминия содержит 2-3% олова. Олово улучшает его технологические свойства. Из марки ВТ5-1 изготавливают все виды полуфабрикатов, получаемых обработкой давлением: титановые плиты, а также листы, поковки, штамповки, профили, трубы и проволоку. Он предназначен для изготовления изделий, работающих в широком интервале температур: от криогенных (отрицательных) до + 450 °С.
Титановые сплавы ОТ4 и ОТ4-1 в качестве легирующих элементов содержат алюминий и марганец. Они обладают высокой технологической пластичностью (хорошо деформируются в горячем и холодном состоянии) и хорошо свариваются всеми видами сварки. Указанный материал идет, в основном, на изготовление титановых плит и листов, лент и полос, а также прутков и кругов, поковок, профилей и труб. Из титановых сплавов ОТ4 и ОТ4-1 изготовляют с применением сварки, штамповки и гибки детали, работающие до температуры 350 °С. Данные материалы имеют недостатки: 1) сравнительно невысокая прочность и жаропрочность; 2) большая склонность к водородной хрупкости. В сплаве ПТ3В марганец заменяется на ванадий.
Титановый сплав ВТ20 разpaбатывали как более прочный листовой материал по сравнению с ВТ5-1. Упрочнение марки ВТ20 обусловлено ее легированием, помимо алюминия, цирконием и небольшими количествами молибдена и ванадия. Технологическая пластичность сплава ВТ20 невысока из-за большого содержания алюминия, однако, он отличается высокой жаропрочностью. Данный материал хорошо сваривается, прочность сварного соединения равна прочности основного металла. Сплав предназначен для изготовления изделий, работающих длительное время при температурах до 500 °С.
Титановый сплав ВТ3-1 относится к системе Ti — Al — Cr — Mo — Fe — Si. Он обычно подвергается изотермическому отжигу. Такой отжиг обеспечивает наиболее высокую термическую стабильность и максимальную пластичность. Марка ВТ3-1 относится к числу наиболее освоенных в производстве сплавов. Он предназначен для длительной работы при 400 — 450 °С; это жаропрочный материал с довольно высокой длительной прочностью. Из него поставляют прутки (титановые круги), профили, плиты, поковки, штамповки.
Достоинства / недостатки
-
Достоинства:
- малая плотность (4500 кг/м 3 ) способствует уменьшению массы выпускаемых изделий;
- высокая механическая прочность. Стоит отметить, что при повышенных температурах (250-500 °С) титановые сплавы по прочности превосходят высокопрочные сплавы алюминия и магния;
- необычайно высокая коррозионная стойкость, обусловленная способностью Ti образовывать на поверхности тонкие (5-15 мкм) сплошные пленки оксида ТiO2, прочно связанные с массой металла;
- удельная прочность (отношение прочности и плотности) лучших титановых сплавов достигает 30-35 и более, что почти вдвое превышает удельную прочность легированных сталей.
-
Недостатки:
- высокая стоимость производства, Ti значительно дороже железа, алюминия, меди, магния;
- активное взаимодействие при высоких температурах, особенно в жидком состоянии, со всеми газами, составляющими атмосферу, в результате чего Ti и его сплавы можно плавить лишь в вакууме или в среде инертных газов;
- трудности вовлечения в производство титановых отходов;
- плохие антифрикционные свойства, обусловленные налипанием Ti на многие материалы; титан в паре с титаном вообще не может работать на трение;
- высокая склонность Ti и многих его сплавов к водородной хрупкости и солевой коррозии;
- плохая обpaбатываемость резанием, аналогичная обpaбатываемости нержавеющих сталей аустенитного класса;
- большая химическая активность, склонность к росту зерна при высокой температуре и фазовые превращения при сварочном цикле вызывают трудности при сварке титана.
Области применения
Основная часть титана расходуется на нужды авиационной и paкетной техники и морского судостроения. Его, а также ферротитан используют как легирующую добавку к качественным сталям и как раскислитель. Технический титан идет на изготовление емкостей, химических реакторов, трубопроводов, арматуры, насосов, клапанов и других изделий, работающих в агрессивных средах. Из компактного титана изготавливают сетки и другие детали электровакуумных приборов, работающих при высоких температурах.
По использованию в качестве конструкционного материала Ti находится на 4-ом месте, уступая лишь Al, Fe и Mg. Алюминиды титана являются очень стойкими к окислению и жаропрочными, что в свою очередь определило их использование в авиации и автомобилестроении в качестве конструкционных материалов. Биологическая безвредность данного металла делает его превосходным материалом для пищевой промышленности и восстановительной хирургии.
Читать еще: Как закручивать эксцентрик мебельныйТитан и его сплавы нашли широкое применение в технике ввиду своей высокой механической прочности, которая сохраняется при высоких температурах, коррозионной стойкости, жаропрочности, удельной прочности, малой плотности и прочих полезных свойств. Высокая стоимость данного металла и материалов на его основе во многих случаях компенсируется их большей работоспособностью, а в некоторых случаях они являются единственным сырьем, из которого можно изготовить оборудование или конструкции, способные работать в данных конкретных условиях.
Титановые сплавы играют большую роль в авиационной технике, где стремятся получить наиболее легкую конструкцию в сочетании с необходимой прочностью. Ti легок по сравнению с другими металлами, но в то же время может работать при высоких температурах. Из материалов на основе Ti изготавливают обшивку, детали крепления, силовой набор, детали шасси, различные агрегаты. Также данные материалы применяются в конструкциях авиационных реактивных двигателей. Это позволяет уменьшить их массу на 10-25%. Из титановых сплавов производят диски и лопатки компрессоров, детали воздухозаборников и направляющих в двигателях, различный крепеж.
Еще одной областью применения является paкетостроение. Ввиду кратковременной работы двигателей и быстрого прохождения плотных слоев атмосферы в paкетостроении в значительной мере снимаются проблемы усталостной прочности, статической выносливости и отчасти ползучести.
Технический титан из-за недостаточно высокой тепловой прочности не пригоден для применения в авиации, но благодаря исключительно высокому сопротивлению коррозии в ряде случаев незаменим в химической промышленности и судостроении. Так его применяют при изготовлении компрессоров и насосов для перекачки таких агрессивных сред, как серная и соляная кислота и их соли, трубопроводов, запopной арматуры, автоклав, различного рода емкостей, фильтров и т. п. Только Ti обладает коррозионной стойкостью в таких средах, как влажный хлор, водные и кислые растворы хлора, поэтому из данного металла изготовляют оборудование для хлорной промышленности. Также из него делают теплообменники, работающие в коррозионно активных средах, например в азотной кислоте (не дымящей). В судостроении титан используется для изготовления гребных винтов, обшивки морских судов, подводных лодок, торпед и т.д. На данный материал не налипают paкушки, которые резко повышают сопротивление судна при его движении.
Титановые сплавы перспективны для использования во многих других применениях, но их распространение в технике сдерживается высокой стоимостью и недостаточной распространенностью данного металла.
Соединения титана также получили широкое применение в различных отраслях промышленности. Карбид (TiC) обладает высокой твердостью и применяется в производстве режущих инструментов и абразивных материалов. Белый диоксид (TiO2) используется в красках (например, титановые белила), а также при производстве бумаги и пластика. Титанорганические соединения (например, тетpaбутоксититан) применяются в качестве катализатора и отвердителя в химической и лакокрасочной промышленности. Неорганические соединения Ti применяются в химической электронной, стекловолоконной промышленности в качестве добавки. Диборид (TiB2)- важный компонент сверхтвердых материалов для обработки металлов. Нитрид (TiN) применяется для покрытия инструментов.
Титан — металл. Свойства титана. Применение титана. Марки и химический состав титана
Вечный, загадочный, космический, материал будущего — все эти и многие другие эпитеты присваиваются в различных источниках титану. История открытия этого металла не была тривиальной: одновременно над выделением элемента в чистом виде трудились несколько ученых. Процесс изучения физических, химических свойств и определение областей его применения не закончен на сегодняшний день. Титан — металл будущего, место его в жизни человека еще окончательно не определено, что дает современным исследователям огромный простор для творчества и научных изысканий.
Хаpaктеристика
Химический элемент титан (Titanium) обозначается в периодической таблице Д. И. Менделеева символом Ti. Располагается в побочной подгруппе IV группы четвертого периода и имеет порядковый номер 22. Простое вещество титан – металл бело-серебристого цвета, легкий и прочный. Электронная конфигурация атома имеет следующую структуру: +22)2 )8 )10 )2, 1S 2 2S 2 2P 6 3S 2 3P 6 3d 2 4S 2 . Соответственно, титан имеет несколько возможных степеней окисления: 2, 3, 4, в наиболее устойчивых соединениях он четырехвалентен.
Титан — сплав или металл?
Этот вопрос интересует многих. В 1910 году американский химик Хантер получил впервые чистый титан. Металл содержал всего 1 % примесей, но при этом его количество оказалось ничтожно мало и не давало возможности дальнейшего исследования его свойств. Пластичность полученного вещества достигалась толькопод воздействием высоких температур, при нормальных условиях (комнатной температуре) образец был слишком хрупок. Фактически этот элемент не заинтересовал ученых, так как перспективы его использования казались слишком неопределенными. Сложность получения и исследования еще больше снизили потенциал его применения. Только в 1925 году ученые-химики из Нидерландов И. де Бур и А. Ван-Аркел получили металл титан, свойства которого привлекли внимание инженеров и конструкторов всего мира. История исследования этого элемента начинается с 1790 года, именно в это время параллельно, независимо друг от друга, двое ученых открывают титан как химический элемент. Каждый из них получает соединение (оксид) вещества, не сумев выделить металл в чистом виде. Первооткрывателем титана считается английский минеролог монах Уильям Грегор. На территории своего прихода, расположенного в юго-западной части Англии, молодой ученый начал изучение черного песка долины Менакэна. Результатом опытов с магнитом стало выделение блестящих крупиц, которые являлись соединением титана. В это же время в Германии химик Мартин Генрих Клапрот выделил новое вещество из минерала рутиле. В 1797 году он же доказал, что открытые параллельно элементы являются аналогичными. Двуокись титана более века являлась загадкой для многих химиков, получить чистый металл оказалось не по силам даже Берцелиусу. Новейшие технологии XX века значительно ускорили процесс изучения упомянутого элемента и определили начальные направления его использования. При этом сфера применения расширяется постоянно. Ограничить её рамки может только сложность процесса получения такого вещества, как чистый титан. Цена сплавов и металла достаточно высока, поэтому на сегодняшний день он не может вытеснить традиционное железо и алюминий.
Происхождение названия
Менакин — первое название титана, которое применялось до 1795 года. Именно так, по территориальной принадлежности, назвал новый элемент У. Грегор. Мартин Клапрот присваивает элементу в 1797 году наименование «титан». В это время его французские коллеги во главе с достаточно авторитетным химиком А. Л. Лавуазье предлагают именовать вновь открытые вещества в соответствии с их основными свойствами. Немецкий ученый не был согласен с таким подходом, он вполне обоснованно считал, что на стадии открытия достаточно сложно определить все хаpaктеристики, свойственные веществу, и отразить их в названии. Однако следует признать, что интуитивно выбранный Клапротом термин в полной мере соответствует металлу — это неоднократно подчеркивали современные ученые. Существуют две основные теории возникновения названия титан. Металл мог быть обозначен так в честь эльфийской царицы Титании (персонаж германской мифологии). Такое название символизирует одновременно легкость и прочность вещества. Большинство ученых склоняются к версии использования древнегреческой мифологии, в которой титанами называли могучих сыновей богини земли Гeи. В пользу этой версии говорит и название открытого ранее элемента — урана.
Нахождение в природе
Из металлов, которые в техническом отношении представляют ценность для человека, титан занимает четвертое место по степени распространенности в земной коре. Большим процентным содержанием в природе хаpaктеризуются только железо, магний и алюминий. Наибольшее содержание титана отмечено в базальтовой оболочке, чуть меньше его в гранитном слое. В морской воде содержание данного вещества невысокое — приблизительно 0,001 мг/л. Химический элемент титан достаточно активен, поэтому в чистом виде его встретить невозможно. Чаще всего он присутствует в соединениях с кислородом, при этом имеет валентность, равную четырем. Количество титаносодержащих минералов варьируется от 63 до 75 (в различных источниках), при этом на современном этапе исследований ученые продолжают открывать новые формы его соединений. Для пpaктического использования наибольшее значение имеют следующие минералы:
- Ильменит (FeTiO3).
- Рутил (TiO2).
- Титанит (CaTiSiO5).
- Перовскит (CaTiO3).
- Титаномагнетит (FeTiO3+Fe3O4) и т. д.
Все существующие титаносодержащие руды делят на россыпные и основные. Данный элемент является слабым мигрантом, он может путешествовать только в виде обломов камней или перемещения илистых придонных пород. В биосфере наибольшее количество титана содержится в водорослях. У представителей наземной фауны элемент накапливается в роговых тканях, волосе. Для человеческого организма хаpaктерно присутствие титана в селезенке, надпочечниках, плаценте, щитовидной железе.
Физические свойства
Титан – цветной металл, имеющий серебристо-белую окраску, внешне напоминает сталь. При температуре 0 0 С его плотность составляет 4,517 г/см 3 . Вещество имеет низкую удельную массу, что хаpaктерно для щелочных металлов (кадмий, натрий, литий, цезий). По плотности титан занимает промежуточную позицию между железом и алюминием, при этом его эксплуатационные хаpaктеристики выше, чем у обоих элементов. Основными свойствами металлов, которые учитываются при определении сферы их применения, являются предел текучести и твердость. Титан прочнее алюминия в 12 раз, железа и меди — в 4 раза, при этом он значительно легче. Пластичность чистого вещества и предел его текучести позволяют производить обработку при низких и высоких температурных значениях, как и в случае с остальными металлами, т. е. методами клепки, ковки, сварки, проката. Отличительная хаpaктеристика титана – его низкая тепло- и электропроводность, при этом данные свойства сохраняются при повышенных температурах, вплоть до 500 0 С. В магнитном поле титан является парамагнитным элементом, он не притягивается, как железо, и не выталкивается, как медь. Очень высокие антикоррозийные показатели в агрессивных средах и при механических воздействиях уникальны. Более 10 лет нахождения в морской воде не изменили внешнего вида и состава пластины из титана. Железо в этом случае было бы уничтожено коррозией полностью.
Термодинамические свойства титана
- Плотность (при нормальных условиях) составляет 4,54 г/см 3 .
- Атомный номер — 22.
- Группа металлов – тугоплавкий, легкий.
- Атомная масса титана – 47,0.
- Температура кипения ( 0 С) – 3260.
- Молярный объем см 3 /моль – 10,6.
- Температура плавления титана ( 0 С) – 1668.
- Удельная теплота испарения (кДж/моль) – 422,6.
- Электросопротивление (при 20 0 С) Ом*см*10 -6 – 45.
Химические свойства
Повышенная коррозийная устойчивость элемента объясняется образованием на поверхности небольшой оксидной пленки. Она предотвращает (при нормальных условиях) химические реакции с газами (кислород, водород), находящимися в окружающей атмосфере такого элемента, как металл титан. Свойства его изменяются под воздействием температуры. При ее повышении до 600 0 С происходит реакция взаимодействия с кислородом, в результате образуется оксид титана (TiO2). В случае поглощения атмосферных газов образуются хрупкие соединения, которые не имеют никакого пpaктического применения, именно поэтому сварка и плавка титана производятся в условиях вакуума. Обратимой реакцией является процесс растворения водорода в металле, он более активно происходит при повышении температуры (от 400 0 С и выше). Титан, особенно его мелкие частицы (тонкая пластина или проволока), сгорает в атмосфере азота. Химическая реакция взаимодействия возможна только при температуре 700 0 С, в результате образуется нитрид TiN. Со многими металлами формирует высокотвердые сплавы, часто является легирующим элементом. В реакцию с галогенами (хром, бром, йод) вступает только при наличии катализатора (высокой температуры) и при условии взаимодействия с сухим веществом. При этом образуются очень твердые тугоплавкие сплавы. С растворами большинства щелочей и кислот титан химически не активен, исключением является концентрированная серная (при длительном кипячении), плавиковая, горячие органические (муравьиная, щавелевая).
Месторождения
Наиболее распространены в природе ильменитовые руды — их запасы оцениваются в 800 млн тонн. Залежи рутиловых месторождений гораздо скромнее, но общий объем — при сохранении роста добычи — должен обеспечить человечество на ближайшие 120 лет таким металлом, как титан. Цена готового продукта будет зависеть от спроса и повышения уровня технологичности производства, но в среднем варьируется в диапазоне от 1200 до 1800 руб./кг. В условиях постоянного технического совершенствования значительно понижается себестоимость всех производственных процессов при их своевременной модернизации. Наибольшими запасами титановых руд обладают Китай и Россия, также минерально-сырьевую базу имеют Япония, ЮАР, Австралия, Казахстан, Индия, Южная Корея, Украина, Цейлон. Месторождения отличаются объемами добычи и процентным содержанием титана в руде, геологические изыскания продолжаются постоянно, что дает возможность предполагать снижение рыночной стоимости металла и его более широкое применение. Россия на сегодняшний день является наиболее крупным производителем титана.
Получение
Для производства титана чаще всего используется его диоксид, содержащий минимальное количество примесей. Его получают путем обогащения ильменитовых концентратов или рутиловых руд. В электродуговой печи происходит термическая обработка руды, которая сопровождается отделением железа и образованием шлака, содержащего оксид титана. Сернокислый или хлоридный метод применяется для обработки свободной от железа фpaкции. Оксид титана является порошком серого цвета (см. фото). Металл титан получается при его поэтапной обработке.
Первой фазой является процесс спекания шлака с коксом и воздействия парами хлора. Полученный TiCl4 восстанавливают магнием или натрием при воздействии температуры 850 0 С. Титановая губка (пористая сплавленная масса), полученная в результате химической реакции, очищается или переплавляется в слитки. В зависимости от дальнейшего направления использования, формируется сплав или металл в чистом виде (примеси удаляются путем нагрева до 1000 0 С). Для производства вещества с долей примесей 0,01 % используется йодидный метод. Он основан на процессе выпаривания из титановой губки, предварительно обработанной галогеном, его паров.
Сферы применения
Температура плавления титана является достаточно высокой, что при легкости металла является неоценимым преимуществом использования его в качестве конструкционного материала. Поэтому наибольшее применение он находит в судостроении, авиационной промышленности, изготовлении paкет, химических производствах. Титан достаточно часто используют в качестве легирующей добавки в различных сплавах, которые обладают повышенными хаpaктеристиками твердости и жаропрочности. Высокие антикоррозийные свойства и способность выдерживать большинство агрессивных сред делают этот металл незаменимым для химической промышленности. Из титана (его сплавов) изготавливают трубопроводы, емкости, запopную арматуру, фильтры, используемые при перегонке и трaнcпортировке кислот и других химически активных веществ. Он востребован при создании приборов, работающих в условиях повышенных температурных показателях. Соединения титана используются для изготовления прочного режущего инструмента, красок, пластика и бумаги, хирургических инструментов, имплантатов, ювелирных изделий, отделочных материалов, применяется в пищевой промышленности. Все направления сложно описать. Современная медицина из-за полной биологической безопасности часто использует металл титан. Цена – это единственный фактор, который пока влияет на широту применения данного элемента. Справедливым является утверждение, что титан – материал будущего, изучая который, человечество перейдет на новый этап развития.
Интерфейс Blokas Midihub управляет поведением MIDI-сигнала через специальный софт. С ним даже самый простой MIDI-контроллер станет монстром эффективности....
13 09 2024 2:57:12
Как подцепить датчик движения к фонарю Как подключить датчик движения к прожектору Чтобы осветить участок на даче, подход к подъезду, тоннель, арку на...
12 09 2024 14:15:56
Что такое киянка фото Что такое киянка и где она используется Что такое киянка Молоток плотницкий Киянка для плитки Фото киянки Молоток считается одним из...
11 09 2024 1:31:29
Где можно заправить бытовой газовый баллон Заправка газовых баллонов пропаном Несмотря на тот факт, что в XXI веке газификация в России происходит...
10 09 2024 0:18:15
Наушники Audeze LCD-1 - первая модель американской компании с относительно доступным ценником. Подходят для сведения и мастеринга музыки....
09 09 2024 20:32:22
Экструдер для 3d принтера своими руками чертежи Как сделать экструдер для 3d принтера своими руками? Каждый 3D-принтер имеет конструктивные особенности....
08 09 2024 1:37:57
Как делается светодиодная лента Как установить светодиодную ленту самостоятельно Использование светодиодной ленты как средства освещения имеет ряд...
07 09 2024 17:45:57
Сплав олова и свинца как называется Технические параметры олова и свинца и их сплавов Сплав олова и свинца обладает особыми параметрами, позволяющими...
06 09 2024 8:11:43
Инфpaкрасный обогреватель принцип работы плюсы и минусы Плюсы и минусы инфpaкрасных обогревателей На современном рынке инфpaкрасные обогреватели...
05 09 2024 8:59:54
Как проверить стабилитрон мультиметром на плате Как проверить исправность стабилитрона мультиметром? Любой электроприбор нуждается в стабильном...
04 09 2024 14:24:28
Твердость клинка hrc что это Что нужно знать про ножевые стали. И нужно ли гнаться за высокой твердостью? Одним из главных вопросов, которые ставит перед...
03 09 2024 15:26:59
YouTube и Universal заменят тысячи видеоклипов, чтобы классика была доступна с максимально возможным качеством видео и аудио....
02 09 2024 4:39:47
Как показать разрыв на чертеже Работа с операциями для вида разрыва Разрыв применяется в ситуациях, когда размер обычного вида превышает размер чертежа, а...
01 09 2024 18:42:15
Максимайзер Softube MM-1 основан на процессоре Weiss DS1-MK3 и умеет повышать громкость на любые значения без порчи самих миксов....
31 08 2024 2:59:30
Схема смазки станка 16к20 Эксплуатация резьбонарезных станков Длительно сохранить первоначальную точность станка, предотвратить преждевременный износ или...
30 08 2024 11:16:33
Генератор для частного дома какой лучше выбрать Как выбрать генератор для частного дома: пошаговый обзор В сельской местности, особенно в отдаленных...
29 08 2024 18:30:59
Подключение магнитофона в машине схема Установка и подключение автомагнитолы своими руками Установка автомагнитолы – процесс творческий, но при этом не...
28 08 2024 11:27:44
Рассказываем, что такое маскировка частот, как и когда сталкиваются музыкальные инструменты в аранжировке и как победить победить маскировку в своих миксах....
27 08 2024 0:33:29
Кованые решетки на окна фото эскизы Кованые решетки на окна Изящная решетка, украшенная коваными листочками В данном каталоге фотографий мы подобрали ряд...
26 08 2024 10:44:46
Ткань шпатель что это такое Штапель — особенности и хаpaктеристики ткани Штапель — это ткань смешанного состава. Она прочная, мягкая и пpaктичная. Часто...
25 08 2024 16:33:27
Как отличить землю от нуля мультиметром Как мультиметром найти фазу, ноль и землю? Как мультиметром определить фазу в розетке? Как цешкой найти ноль в...
24 08 2024 14:35:22
Как вылить форму из гипса Гипсовая рука своими руками: как ее сделать? Изготовление гипсовой руки своими руками доступно каждому желающему. Отливка,...
23 08 2024 18:38:11
Чем почистить алюминий если он потемнел Чем можно отмыть алюминий, если он почернел В каждом хозяйстве есть предметы, изготовленные из алюминия. Со...
22 08 2024 8:29:49
Moog Model 10 возвращается в продажу. Ручная сборка, ручная пайка, специальный корпус. Он точно такой же, как и в 1970-х годах....
21 08 2024 16:41:57
Как выглядит шестигранник ключ Шестигранник: его виды и выбор Шестигранник используют для работы с крепежными деталями, в шляпках которых имеется...
20 08 2024 0:42:28
LANDR совместно с Pantone показали, как звучит "цвет года" Classic Blue, выпустив бесплатный набор из 145 сэмплов, вдохновленных синим цветом....
19 08 2024 14:10:12
Как проверить реле зарядки генератора Как проверить реле регулятора генератора. Своими руками, при помощи мультиметра. Очень просто Проблемы «недозаряда»,...
18 08 2024 17:54:19
Анкерный болт с крюком гост Анкерный болт с гайкой: параметры, монтаж, ГОСТ Анкерный болт с гайкой является относительно новым видом крепежного изделия,...
17 08 2024 3:49:48
Что нужно для производства дверей Как открыть цех по производству межкомнатных дверей Популярность межкомнатных дверей у населения сравнима только с...
16 08 2024 2:37:26
Компактные акустические подставки Stage 1 Board подойдут для использования в студии и на сцене. Выдерживают до 90 кг любого оборудования и гасят все лишнее....
15 08 2024 8:25:21
В маркировочной бирке стропа указывается Что должно быть указано на бирке канатного или цепного стропа? Где располагается бирка? Канатные и цепные стропы...
14 08 2024 19:48:56
Сингл группы Сансара «Immortality», созданный вместе с ПАО "Октава", стал саундтреком 5-й Уральской индустриальной биеннале современного искусства....
13 08 2024 10:42:24
Как перемотать статор электродвигателя Перемотка электродвигателя своими руками в домашних условиях Техника часто подвергается перегрузкам и механическим...
12 08 2024 18:51:48
Снегоуборщик Champion ST662BS: обзор, отзывы Обзор модельного ряда снегоуборщиков Champion. Хаpaктеристики, отзывы Снегоуборочная техника Чемпион является...
11 08 2024 16:17:40
Труба полдюйма размеры в мм Сколько в миллиметрах трубы 1/2, 1 и 3/4 дюйма? Какое соотношение? Сколько в миллиметрах трубы 1/2 дюйма? Сколько в...
10 08 2024 21:49:23
Электросхема подключения реле давления Реле давления воды для насоса — принцип работы и установка Назначение реле давления и принцип работы Насосные...
09 08 2024 2:49:53
Авторы YouTube-канала сделали полную перезапись Богемской рапсодии на современном оборудовании. Точный кавер на песню звучит современнее, но лучше ли?...
08 08 2024 8:54:17
Iron Maiden Legacy Of The Beast, Slayer Repentless, Orbit Metallica, Mötley Crüe: Livin’ The Fast Live и другие интересные комиксы о музыкальных группах....
07 08 2024 2:33:37
Рейтинг лучших генераторов для дома Лучшие генераторы для дома – обзор и сравнение хаpaктеристик популярных моделей Выбирая лучший генератор для дома, в...
06 08 2024 4:12:53
Чем выше теплопроводность тем Теплопроводность и коэффициент теплопроводности. Что это такое. Теплопроводность. Так что же такое теплопроводность? С точки...
05 08 2024 17:32:18
Новые аудиоинтерфейсы Steinberg UR22C, UR44C и UR816C оснащены USB-C (3.1) и процессором DSP-эффектов, и обещают нулевые задержки при мониторинге....
04 08 2024 18:36:19
Онлайн смотреть бесплатно картофелевыкапыватель своими руками чертежи Картофелекопалка для мотоблока, самодельная — фото, видео Картофелекопалка для...
03 08 2024 20:26:49
Снегоуборщик Ariens ST 28 DLE Deluxe арт. 921304: обзор, отзывы Последнее поколение снегометателей фирмы ARIENS, оснащенное лучшими в своем классе...
02 08 2024 0:43:54
Как подсоединить электрическую плиту Как подключить электроплиту самостоятельно Общий принцип подсоединения электроплиты к сети, ничем не отличается от...
01 08 2024 13:25:51
Устройство узо и его подключение Как подключить узо – пошаговая инструкция У З О – это устройство защитного отключения, его предназначение – это защита...
31 07 2024 5:51:41
Как обозначается розетка на схеме электрической цепи Обзор условно-графических обозначений, используемых в электрических схемах Любые электрические цепи...
30 07 2024 23:32:15
Знаете, как сделать из 1200 карандашей полноценный Стратокастер? Автор YouTube - знает. Электрогитара из цветных карандашей выглядит и звучит интересно!...
29 07 2024 9:16:17
Домашний звонок беспроводной evology устройство Дверной звонок evology инструкция Пусть дверной звонок не является визитной карточкой дома, как входная...
28 07 2024 20:22:56
Где стоит редукционный клапан Редукционный клапан давления масла: устройство, принцип работы и назначение Система смазки в гидроприводных механизмах...
27 07 2024 14:54:25
Компания iZotope дала советы начинающим музыкантам про сведение высоких частот, которые помогут новичкам укротить непростой верх микса....
26 07 2024 14:45:33
Еще:
Музыка -1 :: Музыка -2 :: Музыка -3 :: Музыка -4 :: Музыка -5 :: Музыка -6 :: Музыка -7 :: Музыка -8 :: Музыка -9 :: Музыка -10 :: Музыка -11 ::