Как создать плазменный тороид > Как создать музыку?
Музыка: как это делается    

Как создать плазменный тороид

Как создать плазменный тороид

0a9e6d14

TechnologySide

Многообразие проявлений причинно-следственных связей в материальном мире обусловило существование нескольких моделей причинно-следственных отношений. Исторически сложилось так, что любая модель этих отношений может быть сведена к одному из двух основных типов моделей или их сочетанию.

Формирование шаровой молнии

Итак, плазменный тороид в завершающей стадии формирования стянут двумя собственными магнитными полями в овальную форму со сквозным вертикальным отверстием небольшого диаметра на месте центральной вертикальной оси. Центральное отверстие тороида сократилось, потому что упругость силовых линий захваченного магнитного поля линейной молнии и упругость силовых линий собственного продольного поля направлены к центральной оси тороида, а они стремятся сократиться до возможно минимальной длины. Через это отверстие замыкаются все силовые линии другого собственного поперечного магнитного поля тороида, которые также стремятся сократиться до минимальной длины. Стянутый тороид (теперь овал) выглядит в поперечном сечении как два рядом расположенных вертикально удлиненных плосковыпуклых овала, обращенных плоскими сторонами к отверстию. Массивные ионы движутся по периферии овала, то есть по широким спиралям, сжатым в овал, образующим в результате такого движения замкнутую овальную трубу. Внутри вдоль трубы в верхней ее половине движутся с некоторым преимуществом протоны по спиралям меньшего радиуса, а в нижней половине – преимущественно электроны по своим спиралям совсем малого радиуса. Хотя плазменный овал в целом остается квазинейтральным, но поскольку положительные ионы преимущественно движутся по периферии овала, то этим самым они экранируют отрицательный заряд внутренних электронов и внешне у шаровой молнии больше проявляется положительный заряд.

На рисунке изображена в поперечном сечении шаровая молния, представляющая собою плазменный тороид, стянутый двумя собственными магнитными полями. В сечении тороид выглядит как два плосковыпуклых овала, обращенных плоскими сторонами к центральному отверстию. Продольное поле окрашено условно синим цветом, поперечное зеленым и изображены эти поля также условно одно поверх другого, в действительности же они взаимно пронизывают друг друга. Азотные и кислородные ионы, движущиеся по спиралям на периферии тороида, образуют замкнутую саму на себя овальную трубу большого диаметра. Внутри трубы по замкнутому кольцу движутся протоны и электроны по спиралям малого диаметра. При формировании тороида часть протонных спиралей сместились вверх, а часть электронных спиралей сместились вниз овальной трубы. Разделившиеся протоны и электроны образуют электрическое поле, иначе говоря, заряженный электрический конденсатор.

Наблюдатели сообщают, что иногда из ярко светящегося клубка, возникающего на нижнем конце разряда линейной молнии, выскакивают несколько шаровых молний. Наблюдают шаровые молнии, которые разделяются на несколько мелких молний. Наблюдались шаровые молнии, из которых даже при взрыве выскакивали молнии меньшего размера.

Думается, что предлагаемая идея может объяснить такие явления. При разряде линейной молнии в магнитное поле с холодной плазмой, охватывающей ее торец, влетают несколько прострaнcтвенно разделенных порций горячей плазмы. Каждая отдельная порция горячих ионов и электронов образуют там с уже имеющимися ионными и электронными спиралями свою обособленную от других подогретую спиральную трубу, замкнутую в тороид. В результате внутри каждой подогретой тороидальной трубы в магнитном поле движутся по своим спиральным дорожкам электроны и протоны и те, что были там и те, что влетели в холодную плазму вместе с порцией горячей плазмы. Двигаясь в неоднородном магнитном поле внутри ионной трубы, протоны и электроны частично разделяются, образуя электрическое поле. Если образовавшиеся автономные тороиды не успели объединиться, сцепившись собственными поперечными магнитными полями, то они выталкиваются в атмосферу по отдельности, а если успели объединиться, то выталкивается одна большая шаровая молния в виде удлиненного овала. В [4, стр. 120] говорится: «М.Т.Дмитриев отмечает, что шаровая молния (точнее, центральная ее часть, окруженная ореолом) представляла собой вытянутый вдоль вертикального диаметра шар». Далее говорится: «Ряд других наблюдателей сообщают о вытягивании молний вдоль вертикального диаметра, изредка довольно значительном, в большинстве же случаев – небольшом».

Таким образом, шаровая молния может включать в себя несколько автономных молний. Автономные тороиды молний нанизаны на одну общую ось, проходящую через центральные отверстия тороидов. Каждый тороид охвачен локально собственным продольным магнитным полем, а собственные поперечные магнитные поля тороидов, складываясь, образуют одно общее поперечное магнитное поле, охватывающее все автономные тороиды и замыкающееся через общее центральное отверстие шаровой молнии. При возникновении неустойчивости объединенная молния может разделиться, иногда с взрывом, то есть взрывается одна из них, а некоторые при взрыве могут и уцелеть.

Немного больше о технологиях >>>

Вода — энергоноситель, способный заменить нефть.
Нефть, уголь и природный газ являются основными энергоносителями, заменитель которым еще не найден. Все они являются продуктами Солнца, за миллионы лет накопившиеся на Земле. Сжигание этих энергоносителей с целью получения энергии является основным фактором загрязнения окружающ .

Обобщенный принцип наименьшего действия
Введены континуально многозначные функции, позволяющие адекватно описывать физические задачи. Показано их отличие от разрывных функций. Сформулирована и решена вариационная задача для функционалов с разрывным интегрантом, зависящих от линейных интегральных операторов, действующ .

Плазменное оружие: современные разработки

Термин «новое плазменное оружие» в последнее время всё чаще муссируется различными СМИ. Информация поступает противоречивая. Оно и понятно: проекты в различных странах находятся только на стадии разработки. Бесспopно и утверждение о том, что самое совершенное оружие – это то, о котором предполагаемый противник пpaктически ничего не знает, и тогда его использование позволяет достичь ещё большего эффекта. Что же на самом деле представляет собой плазменное оружие? Ответ на этот вопрос может дать лишь его использование (разумеется, если существует такое оружие) в реальной боевой обстановке. Что известно о современных разработках плазменного оружия в мире? Об этом и пойдёт речь дальше в статье.

Влияние плазменного оружия на современную культуру

В современных компьютерных играх и фильмах предпринимается попытка представить новые виды вооружений, с которыми, возможно, столкнется человечество в будущих конфликтах. Одной из таких попыток является знаменитая компьютерная игра «Фоллаут». Плазменное оружие, лазерные карабины, ядерные мини-заряды – это далеко не весь перечень арсенала, который, по мнению разработчиков, ожидает человечество в альтернативной Вселенной, пережившей ядерную войну. Как современные разработки плазменного оружия приблизились к представлениям фантастов и футурологов? Насколько мы приблизились к созданию средств уничтожения подобной разрушительной силы? Для того чтобы ответить на подобные вопросы, необходимо совершить экскурс в историю, от открытия и создания плазменного оружия до перспективных разработок учеными всего мира.

История возникновения плазменного оружия

В 1923 году американские ученые Ленгмюр и Тонск предложили обозначить новую форму существования вещества при 10000 градусах, которую они назвали плазмой. Верхний слой атмосферы (ионосфера) полностью состоит из плазмы.

Разработка плазменного оружия в СССР

В середине 50-х годов в СССР для изучения вопросов физико-термоядерного синтеза была создана тороидальная камера с магнитной катушкой. Видный советский ученый Капица Петр Леонидович работал над созданием принципиально нового источника энергии. В 1964 году молодые советские ученые, среди которых была Валентина Николаева, создали проект «Мечта», подразумевающий поражение баллистических paкет при помощи плазменных образований. При столкновении с объектом плазмоид должен действовать по принципу уранового снаряда, выделяя при взрыве колоссальную энергию.

По задумке изобретателей, плазменное оружие – это система, состоящая из плазмоида (средство поражения) и его пускового устройства (импульсного магнитного гидродинамического (МГД) генератора). Генератор разгоняет плазму в магнитном поле до скорости света и задает ей направление движения. Корректировка полета производится лазером.

Появление опытных прототипов в Советском Союзе

Приблизительным временем создания называется 1970 год. Основная цель – разработка импульсномагнититного гидродинамического генератора, с помощью которого можно было создать плазмоиды (или шаровые молнии) для поражения воздушных целей предполагаемого агрессора. В 1974 году начал работу открытый резонатор ДОР2, с помощью которого создавались управляемые искусственные шаровые молнии. Ионизированный газ или плазма, образовывается из нейтральных атомов и молекул и заряженных частиц ионов и электронов. Можно упомянуть создание секретной станции «Сурана», построенной недалеко от Нижнего Новгорода. Советский ученый Авраменко добился поразительных результатов при изучении ионизированных облаков. Были предприняты даже попытки использовать эти разработки в современном самолетостроении. В мечтах самолетостроителей – окружить самолет плазмой для уменьшения сопротивления воздуха и увеличения скорости в десятки раз. О перспективе таких разработок мало известно по понятным причинам.

Идеи плазменного оружия в современной России

После развала СССР финансирование разработок плазменного оружия России прекратилось, но это не значит, что русские ученые прекратили дальнейшие исследования. Работы велись на голом энтузиазме. Новые разработки плазменного оружия России начались на фоне ухудшающейся мировой политической обстановки. Выход США из договора по ПРО и укрепление блока НАТО у российских границ подстегнули руководство страны пересмотреть оборонную стратегию. Недавние заявления американского президента Дональда Трампа о бескомпромиссном перевооружении армии США также не способствуют уменьшению напряжения в отношениях между Россией и Западом.

Осенью 2017 года президентом В.В. Путиным будет рассмотрена государственная программа вооружений на 2018-2025 годы. В ней упоминается оружие, основанное на «новых физических принципах». Скорее всего, в ближайшее время будет внесена ясность по вопросу применения плазменного оружия в современном обществе. Если говорить о новейших разработках России – загадки и домыслы окружают эту тему. Есть обрывки слухов о каком-то проекте с применением плазменного щита, способного обеспечить защиту мирного неба России.

Интересно вспомнить встречу Б. Ельцина с американцами в Ванкувере в 1993 году. Российская сторона предлагала вблизи атолла Кваджалейн провести совместные испытания глобальной противоpaкетной обороны на базе российского плазменного оружия. Изобретатель плазменного оружия Римилий Авраменко вкратце упоминал о перспективах введения в эксплуатацию модели данной разработки. Она принесла бы пользу не только военным: с её помощью возможно уничтожать космический мусор или убирать озоновые дыры. Но, к сожалению, этот проект не воплотился в жизнь.

Чаяния и надежды, связанные с плазмой

Плазма открывает множество перспектив не только в военной сфере. Разработка плазменных генераторов позволяет перевести технику пpaктически на любое топливо без ущерба качеству.

Разработка плазменных технологий может дать толчок для дальнейшего развития технического прогресса.

Освоение плазменных технологий в США

Разработки плазменного оружия ведутся по всему миру, и США не являются исключением. Ярким примером можно считать в 1989 году, в рамках стратегической оборонной инициативы, вывод в космос прототипа пучкового оружия, которое, как предполагалось, могло генерировать нейтральные атомы водорода и тем самым сбивать советские paкеты. Об «успехах» этого оружия свидетельствует тот факт, что оно находится не на вооружении, а в музее космонавтики в Вашингтоне. Станция активного высокочастотного исследования ионосферы ХААРП – это тоже попытка изучения и создания плазменного оружия. Рельсотроны, разрекламированные с помпой оказались очередным блефом. В 2016 году в новостной ленте иногда проскальзывали сообщения о попытках американских военных протестировать плазменное оружие не cмepтельного действия. Таким образом, видно, что современные разработки плазменного оружия ведутся по всему миру, на них выделяются средства и лучшие умы человечества бьются над покорением плазмы.

Описание заявленных общих принципов работы

О технических хаpaктеристиках плазменного оружия можно только догадываться в силу засекреченности информации. Если говорить о плазмоидах, то это плазма в магнитном поле, созданном при помощи МГД генератора и имеющая скоростью света в направленном движении. На экранах популярных телепередач иногда упоминаются весьма интересные хаpaктеристики: возможные размеры, внутренняя энергия и время жизни плазмоида.

По мнению некоторых ученых, средняя температура на земле поднялась, а при таких темпах мир могут постигнуть катастрофы планетарного масштаба, выраженные в подтоплениях, засухах, ураганах, нехватке питьевой воды. Такие изменения вполне могут быть спровоцированы испытаниями плазменного оружия. Его освоение в военной сфере дает возможность не только перехватывать paкеты, но и психотронно влиять на массы людей и изменять климат. Мощнейшей радиолокационной станции ХААРП также приписывается способность влиять на погоду. Однако это только домыслы и догадки, так как официально никто не признал факта наличия у себя такого оружия.

Плазменные шапки-невидимки

В условиях современного боя основная ставка делается на внезапность нанесения удара. Но при этом неизбежно происходит демаскировка. Об этой проблеме задумывались еще советские ученые, предложив довольно оригинальный способ скрытия техники от систем радиоэлектронного обнаружения. Идея была в том, чтобы оборудовать самолеты специальными плазменными генераторами. Такие летательные аппараты, не сгорая, могли проходить плотные слои атмосферы, достигая земли за считаные секунды, совсем как баллистические paкеты.

Плазма обладает еще одним интересным свойством: она гасит электромагнитные импульсы во всех диапазонах. Казалось, найдено идеальное средство маскировки. Первые испытания проводились на истребителе МиГ-29, но результаты были неудовлетворительными. Плазма мешала работе бортовых компьютеров. В итоге было принято решение прикрывать только наиболее уязвимые для радаров части конструкции. Эта технология была применена на стратегическом бомбардировщике Ту-160.

Турецкое плазменное оружие

В 2013 году всему миру было объявлено о разработке боевых лазеров для турецкого морского флота. На проект, рассчитанный на шесть лет, выделяется свыше 50 миллионов долларов. Заявляется о двух моделях боевых лазеров. В 2015 году успешно прошли лабораторные испытания: была поражена цель на движущейся платформе. Объявлено, что перспективы нового вооружения не имеют аналогов в мире. Это оружие способно останавливать ядерную бомбу. Само население Турции не удержалось от сарказма по поводу новостного бума, причем доставалось и военным, и создателям «чудо оружия». Можно говорить с полной уверенностью лишь о том, что разработка современных и перспективных типов вооружения ведется не только сверхдержавами, обладающими весомыми «ядерными аргументами».

Читать еще:  Какой компрессор нужен для краскопульта

Заключение

Современные разработки плазменного оружия и других новейших типов вооружения с колоссальной разрушительной силой не дают ответа на вопрос, каким будет будущее на планете Земля. Возможно, эти изыскания откроют ящик Пандоры. Перспективы, открывающиеся в связи с развитием новых технологий, таят и множество опасностей для всего человечества. Вопрос не в том, будет ли создано плазменное оружие, боевые лазеры и многие другие вещи, которые на первый взгляд кажутся плодом воображения фантастов, а в том, когда это произойдет. События последних лет (введение санкций и ухудшение международной обстановки) являются спусковым механизмом перезапуска холодной войны, что, в свою очередь, является важнейшим фактором появления еще более разрушительных видов оружия.

А пока мир разделился на скептиков и оптимистов. Ведутся ожесточенные споры, разрешить которые смогут только появление или отсутствие оружия, работающего «на новых физических принципах» (для оборонной промышленности). Однако заявления высокопоставленных лиц говорят о том, что не бывает дыма без огня, и в будущем человечество ждет немало удивительных открытий.

Как создать плазменный тороид

Каталог магнитов

Магнитное удержание плазмы

Расскажем сегодня о магнитном удержании плазмы.

ПЛАЗМА – частично или полностью ионизованный газ, образованный из нейтральных атомов (или молекул) и заряженных частиц (ионов и электронов). Важнейшей особенностью плазмы является ее квазинейтральность, это означает, что объемные плотности положительных и отрицательных заряженных частиц, из которых она образована, оказываются почти одинаковыми. Газ переходит в состояние плазмы, если некоторые из составляющих его атомов (молекул) по какой-либо причине лишились одного или нескольких электронов, т.е. превратились в положительные ионы. В некоторых случаях в плазме в результате «прилипания» электронов к нейтральным атомам могут возникать и отрицательные ионы. Если в газе не остается нейтральных частиц, плазма называется полностью ионизованной.

Одна из важных особенностей плазмы в том, что отрицательный заряд электронов в ней почти точно нейтрализует положительный заряд ионов. При любых воздействиях на нее плазма стремится сохранить свою квазинейтральность. Если в каком-то месте происходит случайное смещение (например, за счет флуктуации плотности) части электронов, создающее избыток электронов в одном месте и недостаток в другом, в плазме возникает сильное электрическое поле, которое препятствует разделению зарядов и быстро восстанавливает квазинейтральность.

Плазма – четвертое состояние вещества, она подчиняется газовым законам и во многих отношениях ведет себя как газ. Вместе с тем, поведение плазмы в ряде случаев, особенно при воздействии на нее электрических и магнитных полей, оказывается столь необычным, что о ней часто говорят как о новом четвертом состоянии вещества. В 1879 английский физик В.Крукс, изучавший электрический разряд в трубках с разреженным воздухом, писал: «Явления в откачанных трубках открывают для физической науки новый мир, в котором материя может существовать в четвертом состоянии». Древние философы считали, что основу мироздания составляют четыре стихии: земля, вода, воздух и огонь. В известном смысле это отвечает принятому ныне делению на агрегатные состояния вещества, причем четвертой стихии – огню и соответствует, очевидно, плазма.

Магнитное удержание плазмы

Как известно, в магнитном поле заряженные частицы движутся по спиралям, «навиваясь» своими траекториями на силовые линии магнитного поля. Поэтому однородное поле сильно уменьшает диффузию и теплопроводность плазмы в направлении поперек силовых линий. Однородное поле, однако, никак не влияет на движение заряженных частиц вдоль силовых линий.

Естественный путь устранения потерь плазмы вдоль силовых линий — сворачивание плазменного шнура в тор. Но при этом магнитное поле становится неоднородным и хаpaктер движения заряженных частиц в нем усложняется возникает дрейф (медленное смещение) частиц поперек силовых линий поля. Для устранения дрейфа, а также обеспечения равновесия и устойчивости плазменного кольца используют различные комбинации внешних полей и полей, возникающих при протекании токов в самой плазме. В зависимости от структуры этих полей возможны различные виды тороидальных (или замкнутых) ловушек для плазмы: токамаки, стеллараторы и т.д.

Однако, несмотря на это, «ловушки» не являются единственной исследуемой системой магнитного удержания плазмы. Дело в том, что если рассматривать их не как устройство для удержания горячей плазмы, а как часть термоядерного реактора, то, с чисто инженерной точки зрения, он имеет весьма серьезные недостатки. Импульсный хаpaктер работы токамака порождает проблемы, связанные с «усталостью» материалов из-за циклических термических напряжений, возникающих в элементах конструкции. Кроме того, его тороидальная геометрия сама по себе обусловливает неоднородность тепловых и нейтронных нагрузок на эти элементы. Поскольку силовые линии магнитного поля в тороидальной ловушке представляют собой окружности, можно ожидать центробежный дрейф частиц к стенкам ловушки. Кроме того, в силу принятой геометрии установки, витки с током располагаются на внутренней окружности тора ближе друг к другу, чем на внешней, поэтому индукция магнитного поля увеличивается по направлению от внешней стенки тора к внутренней, что очевидным образом приводит к градиентному дрейфу частиц к стенкам ловушки. Оба вида дрейфа частиц вызывают движение зарядов противоположного знака в разные стороны, в результате вверху образуется избыток отрицательных зарядов, а внизу – положительных.

С тороидальной геометрией связаны головоломные проблемы, которые придется решать при дистанционной разборке и других ремонтных работах на радиоактивной установке, активированной нейтронами.

Наконец, для экономики реакторных систем очень важно, чтобы удержание плазмы осуществлялось как можно более слабым магнитным полем. Коэффициент использования магнитного поля в каждой данной системе удержания можно хаpaктеризовать величиной, равной отношению давления плазмы к давлению внешнего магнитного поля, определяемому как В2/8я, где В — магнитная индукция. Другой способ, также позволяющий компенсировать дрейф плазмы в тороидальной ловушке, состоит в возбуждении вдоль тора электрического тока прямо по плазме. Систему с кольцевым током назвали токамак (от слов «токовая камера», «магнитные катушки»).

Существуют и другие идеи магнитного удержания плазмы. Одна из них заключается, например, в создании ловушек с магнитными «пробками» или так называемых «пробкотронов». В таких устройствах силовые линии продольного магнитного поля, сгущаются по направлению к торцам цилиндрической камеры, в которой находится плазма, напоминая своей формой горлышко бутылки . Уходу заряженных частиц на стенки поперек продольного магнитного поля препятствует их закручивание вокруг силовых линий. Нарастание магнитного поля к торцам обеспечивает выталкивание циклотронных кружков в область более слабого поля, что и создает эффект магнитных «пробок». Магнитные «пробки» называют иногда магнитными зеркалами, от них, как от зеркала, отражаются заряженные частицы.

Диффузия плазмы поперек магнитного поля. Предыдущий анализ поведения заряженных частиц в магнитном поле основывался на предположении об отсутствии столкновений частиц между собой. В действительности же частицы, конечно, взаимодействуют между собой, их столкновения приводят к тому, что они перескакивают с одной линии индукции на другую, т.е. перемещаются поперек силовых линии магнитного поля. Такое явление называют поперечной диффузией плазмы в магнитном поле. Анализ показывает, что скорость поперечной диффузии частиц уменьшается с увеличением магнитного поля (обратно пропорционально квадрату величины магнитной индукции B), а также с возрастанием температуры плазмы. Однако, на самом деле процесс диффузии в плазме оказывается более сложным.

Основную роль в поперечной диффузии плазмы играют столкновения электронов с ионами, при этом ионы, которые движутся вокруг силовых линий по окружностям большего радиуса, чем электроны, в результате столкновений «легче» переходят на другие силовые линии, т.е диффундируют поперек силовых линий быстрее, чем электроны. Из-за различной скорости диффузии частиц противоположного знака происходит разделение зарядов, которому препятствуют возникающие сильные электрические поля. Эти поля пpaктически устраняют возникшую разницу в скоростях движения электронов и ионов, в результате чего наблюдается совместная диффузия разноименно заряженных частиц, которая называется амбиполярной диффузией. Такая диффузия поперек магнитного поля является также одной из важных причин ухода частиц на стенки в устройствах магнитного удержания плазмы.

Заметим, что если первый из указанных недостатков может быть, по-видимому, в будущем устранен, то два других представляют собой, так сказать, врожденные. Поэтому никогда не прекращался поиск систем магнитного удержания, свободных от этих недостатков, т.е. обеспечивающих непрерывную работу, имеющих линейную геометрию и устойчиво удерживающих плотную плазму в относительно слабых магнитных полях . В настоящее время основным соперником токамаков среди систем с магнитным удержанием вновь становятся открытые магнитные ловушки, изучение которых началось еще на заре термоядерных исследований.

tokamak

TOKAMAK (сокр. от «тороидальная камера с магн. катушками»)- устройство для удержания высокотемпературной плазмы с помощью сильного магн. поля. Идея T. была высказана в 1950 академиками И. E. Таммом и А. Д. Сахаровым; первые эксперим. исследования этих систем начались в 1956.

Принцип устройства ясен из рис. 1. Плазма создаётся в тороидальной вакуумной камере, к-рая служит как бы единственным замкнутым витком вторичной обмотки трaнcформатора. При пропускании нарастающего во времени тока в первичной обмотке трaнcформатора 1 внутри вакуумной камеры 5 создаётся вихревое продольное элек-трич. поле. При не очень большой начальной плотности газа (обычно используется водород или его изотопы) происходит его электрич. пробой и вакуумная камера заполняется плазмой с последующим нарастанием большого продольного тока Ip. В совр. крупных T. ток в плазме составляет неск. миллионов ампер. Этот ток создаёт собственное полоидальное (в плоскости поперечного сечения плазмы) магн. поле Вq. Кроме того, для стабилизации плазмы используется сильное продольное магн. поле Вf, создаваемое с помощью спец. обмоток тороидального магн. поля. Именно комбинацией тороидального и полоидального магн. полей обеспечивается устойчивое удержание высокотемпературной плазмы (см. Тороидальные системы ),необходимое для осуществления управляемого термоядерного синтеза.

Рис. 1. Схема токамака: 1 — первичная обмотка трaнcформатора; 2-катушки тороидального магнитного поля; 3 — лайнер, тонкостенная внутренняя камера для выравнивания тороидального электрического поля; 4 — катушки полоидального магнитного поля; 5 — вакуумная камера; б-железный сердечник (магнитопровод).

Операционные пределы. Магн. поле T. достаточно хорошо удерживает высокотемпературную плазму, но только в определённых пределах изменения её параметров. Первые 2 ограничения относятся к току плазмы Ip и её ср. плотности п, выраженной в единицах числа частиц (электронов или ионов) в 1 м 3 . Оказывается, что при заданной величине тороидального магн. поля ток плазмы не может превышать нек-рого предельного значения, иначе плазменный шнур начинает извиваться по винтовой линии и в конце концов разрушается: развивается т. н. неустойчивость срыва тока. Для хаpaктеристики предельного тока используется коэф. запаса q по винтовой неустойчивости, определяемый соотношением q = 5Bja 2 /RIp. Здесь а — малый, R — большой радиус плазменного шнура, Bj — тороидальное магн. поле, Ip — ток в плазме (размеры измеряются в метрах, магн. поле — в теслах, ток — в MA). Необходимым условием устойчивости плазменного шнура является неравенство q>], к-рое наз. к р и т е р и е м К р у-с к а л а — Ш а ф р а н о в а. Эксперименты показывают, что надёжно устойчивый режим удержания достигается лишь при значениях .

Для плотности имеются 2 предела — нижний и верхний. Ниж. предел по плотности связан с образованием т. н. ускоренных, или убегающих электронов. При малой плотности частота столкновений электронов с ионами становится недостаточной для предотвращения их перехода в режим непрерывного ускорения в продольном электрич. поле. Ускоренные до высоких энергий электроны могут представлять опасность для элементов вакуумной камеры, поэтому плотность плазмы выбирается настолько большой, чтобы ускоренных электронов не было. С др. стороны, при достаточно высокой плотности режим удержания плазмы вновь становится неустойчивым из-за радиационных и атомарных процессов на границе плазмы, к-рые приводят к сужению токового канала и развитию винтовой неустойчивости плазмы. Верх. предел по плотности хаpaктеризуется безразмерными параметрами My-paками M=nR/Bj и Хьюгелла H=nqR/Bj (здесь ср. по сечению плотность электронов n измеряется в единицах 10 20 частиц/м 3 ). Для устойчивого удержания плазмы необходимо, чтобы числа M и H не превышали нек-рых критич. значений.

При нагреве плазмы и повышении её давления появляется ещё один предел, хаpaктеризующий максимальное устойчивое значение давления плазмы, p = n(Te+Ti), где Те, Ti-электронная и ионная темп-ры. Этот предел накладывается на величину b, равную отношению ср. давления плазмы к давлению магн. поля; упрощённое выражение для предельного значения b даётся соотношением Тройона bc=gIp/aBj, где g-числовой множитель, равный примерно 3 . 10 -2 .

Термоизоляция. Возможность нагрева плазмы до очень высоких темп-р связана с тем, что в сильном магн. поле траектории заряж. частиц выглядят как спирали, навитые на линии магн. поля. Благодаря этому электроны и ионы длительное время удерживаются внутри плазмы. И только за счёт столкновений и небольших флуктуации электрич. и магн. полей энергия этих частиц может переноситься к стенкам в виде теплового потока. Эти же механизмы определяют величину диффузионных потоков. Эффективность магн. термоизоляции плазмы хаpaктеризуется энер-гетич. временем жизни тE= W/P, где W-полное энергосодержание плазмы, a P-мощность нагрева плазмы, необходимая для поддержания её в стационарном состоянии. Величину tE можно рассматривать также как хаpaктерное время остывания плазмы, если мощность нагрева внезапно отключается. В спокойной плазме потоки частиц и тепла к стенкам камеры создаются за счёт парных столкновений электронов и ионов. Эти потоки вычисляются теоретически с учётом реальных траекторий заряж. частиц в магн. поле T. Соответствующая теория диффузионных процессов наз. неоклассической (см. Переноса процессы ).В реальной плазме T. всегда присутствуют небольшие флуктуации полей и потоков частиц, поэтому реальные уровни потоков тепла и частиц обычно значительно превышают предсказания неоклассич. теории.

Читать еще:  Рейтинг электролобзиков по надежности 2018

Эксперименты, проведённые на многих T. разл. формы и размеров, позволили суммировать результаты исследований механизмов переноса в виде соответствующих эм-пирич. зависимостей. В частности, были найдены зависимости энергетич. времени жизни тE от осн. параметров плазмы для разл. мод удержания. Эти зависимости наз. с к е й л и н г а м и; они успешно используются для предсказания параметров плазмы во вновь вводимых в строй установках.

Самоорганизация плазмы. В плазме T. постоянно имеются слабонелинейные колебания, к-рые влияют на профили распределения темп-ры, плотности частиц и плотности тока по радиусу, как бы управляют ими. В частности, в центр. области плазменного шнура очень часто присутствуют т. н. пилообразные колебания, отражающие периодически повторяющийся процесс постепенного обострения и затем резкого уплощения профиля темп-ры. Пилообразные колебания предотвращают контpaкцию тока к магн. оси тора (см. Контpaкция газового разряда). Кроме того, в T. время от времени возбуждаются винтовые моды (т. н. т и р и н г-м о д ы), к-рые вне шнура наблюдаются в виде низкочастотных магн. колебаний. Тиринг-моды способствуют установлению более устойчивого распределения плотности тока по радиусу. При недостаточно осторожном обращении с плазмой тиринг-моды могут нарасти настолько, что вызываемые ими возмущения магн. поля разрушают магн. поверхности во всём объёме плазменного шнура, магн. конфигурация разрушается, энергия плазмы выбрасывается к стенкам и ток в плазме прекращается из-за её сильного охлаждения (см. Тиринг-неустойчивости).

Кроме этих объёмных колебаний существуют моды колебаний, локализованные на границе плазменного шнура. Эти моды очень чувствительны к состоянию плазмы на самой периферии, их поведение усложнено атомарными процессами. Внеш. и внутр. моды колебаний могут сильно влиять на процессы переноса тепла и частиц, они приводят к возможности перехода плазмы из одного режима магн. термоизоляции в другой и обратно. Если в плазме T. распределение частиц по скоростям сильно отличается от распределения Максвелла, то возникает возможность для развития кинетич. неустойчивостей. Напр., при рождении большого кол-ва убегающих электронов развивается т. н. веерная неустойчивость, приводящая к трaнcформации продольной энергии электронов в поперечную. Кинетич. неустойчивости развиваются также при наличии ионов с высокой энергией, возникающих при дополнит. нагреве плазмы.

Нагрев плазмы. Плазма любого T. автоматически подогревается за счёт джоулева тепла от протекающего по ней тока. Джоулева энерговыделения достаточно для получения темп-ры в неск. млн. градусов. Для целей управляемого термоядерного синтеза нужны темп-ры >10 8 К, поэтому все крупные T. дополняются мощными системами нагрева плазмы. Для этого используются либо эл—магн. волны разл. диапазонов, либо прямая инжекция быстрых частиц в плазму. Для высокочастотного нагрева плазмы удобно использовать резонансы, к-рые отвечают внутр. колебат. процессам в плазме. Напр., нагрев ионной компоненты удобно осуществлять в диапазоне гармоник циклотронных частот либо осн. ионов плазмы, либо специально подобранных ионов-присадок. Нагрев электронов осуществляется при электронно-циклотронном резонансе.

При нагреве ионов с помощью быстрых частиц обычно используются мощные пучки нейтральных атомов. Такие пучки не взаимодействуют с магн. полем и проникают глубоко внутрь плазмы, там они ионизуются и захватываются магн. полем T.

С помощью дополнит, методов нагрева темп-ру плазмы T. удаётся поднять >3·10 8 К, что вполне достаточно для протекания мощной термоядерной реакции. В будущих разpaбатываемых T.-реакторах нагрев плазмы будет осуществляться высокоэнергетичными альфа-частицами, возникающими при реакции слияния ядер дейтерия и трития.

Стационарный токамак. Обычно ток в плазме протекает только при наличии вихревого электрич. поля, создаваемого за счёт увеличения магн. потока в индукторе. Индукционный механизм поддержания тока ограничен во времени, так что соответствующий режим удержания плазмы является импульсным. Однако импульсный режим не является единственно возможным, нагрев плазмы может использоваться и для поддержания тока, если наряду с энергией в плазму передаётся и импульс, разный для разных компонент плазмы. Неиндукционное поддержание тока облегчается за счёт генерации тока самой плазмой при её диффузионном расширении к стенкам (бутстрэп-эффект). Бутстрэп-эффект был предсказан неоклассич. теорией и подтверждён затем экспериментально. Эксперименты показывают, что плазма T. может удерживаться стационарно, и гл. усилия по пpaктич. освоению стационарного режима направлены на повышение эффективности поддержания тока.

Дивертор, управление примесями. Для целей управляемого термоядерного синтеза требуется очень чистая плазма на основе изотопов водорода. Чтобы ограничить примесь др. ионов в плазме, в ранних T. плазма ограничивалась т. н. л и м и т е р о м (рис. 2, а), т. е. диафрагмой, не допускающей соприкосновения плазмы с большой поверхностью камеры. В совр. T. используется гораздо более сложная диверторная конфигурация (рис. 2, б), создаваемая катушками полоидального магн. поля. Эти катушки необходимы даже для плазмы круглого сечения: с их помощью создаётся вертикальная компонента магн. поля, к-рая при взаимодействии с осн. током плазмы не позволяет плазменному витку выброситься на стенку по направлению большого радиуса. В диверторной конфигурации витки полоидального магн. поля расположены так, чтобы сечение плазмы было вытянуто в вертикальном направлении. При этом замкнутые магн. поверхности сохраняются только внутри сепаратрисы, снаружи её силовые линии уходят внутрь диверторных камер, где происходит нейтрализация потоков плазмы, вытекающих из осн. объёма. В диверторных камерах удаётся смягчить нагрузку от плазмы на диверторные пластины за счёт дополнит. охлаждения плазмы при атомарных взаимодействиях.

Рис. 2. Поперечный разрез плазмы круглого сечения (а)и вертикально вытянутого с образованием диверторной конфигурации (6): 1-плазма; 2- лимитер; 3 — стенка камеры; 4 — сепаратриса; 5 -диверторная камера; 6 — ди-верторные пластины.

Токамак-реактор. Гл. целью исследований на установках T. является освоение концепции магн. удержания плазмы для созданий термоядерного реактора. На T. удаётся создать устойчивую высокотемпературную плазму с темп-рой и плотностью, достаточными для термоядерного реактора; установлены закономерности для термоизоляции плазмы; осваиваются методы поддержания тока и управления уровнем примесей. Работы на T. переходят из фазы чисто физ. исследований в фазу создания эксперим. термоядерного реактора.

Лит.: Арцимович Л. А., Управляемые термоядерные реакции, 2 изд., M., 1963; Лукьянов С. Ю., Горячая плазма и управляемый ядерный синтез, M., 1975; Kadomtsev B. В., Tokamak plasma a complex physical system, L., 1992. Б. Б. Кадомцев.

Плазменное оружие: современные разработки

Термин «новое плазменное оружие» в последнее время всё чаще муссируется различными СМИ. Информация поступает противоречивая. Оно и понятно: проекты в различных странах находятся только на стадии разработки. Бесспopно и утверждение о том, что самое совершенное оружие – это то, о котором предполагаемый противник пpaктически ничего не знает, и тогда его использование позволяет достичь ещё большего эффекта. Что же на самом деле представляет собой плазменное оружие? Ответ на этот вопрос может дать лишь его использование (разумеется, если существует такое оружие) в реальной боевой обстановке. Что известно о современных разработках плазменного оружия в мире? Об этом и пойдёт речь дальше в статье.

Влияние плазменного оружия на современную культуру

В современных компьютерных играх и фильмах предпринимается попытка представить новые виды вооружений, с которыми, возможно, столкнется человечество в будущих конфликтах. Одной из таких попыток является знаменитая компьютерная игра «Фоллаут». Плазменное оружие, лазерные карабины, ядерные мини-заряды – это далеко не весь перечень арсенала, который, по мнению разработчиков, ожидает человечество в альтернативной Вселенной, пережившей ядерную войну. Как современные разработки плазменного оружия приблизились к представлениям фантастов и футурологов? Насколько мы приблизились к созданию средств уничтожения подобной разрушительной силы? Для того чтобы ответить на подобные вопросы, необходимо совершить экскурс в историю, от открытия и создания плазменного оружия до перспективных разработок учеными всего мира.

История возникновения плазменного оружия

В 1923 году американские ученые Ленгмюр и Тонск предложили обозначить новую форму существования вещества при 10000 градусах, которую они назвали плазмой. Верхний слой атмосферы (ионосфера) полностью состоит из плазмы.

Разработка плазменного оружия в СССР

В середине 50-х годов в СССР для изучения вопросов физико-термоядерного синтеза была создана тороидальная камера с магнитной катушкой. Видный советский ученый Капица Петр Леонидович работал над созданием принципиально нового источника энергии. В 1964 году молодые советские ученые, среди которых была Валентина Николаева, создали проект «Мечта», подразумевающий поражение баллистических paкет при помощи плазменных образований. При столкновении с объектом плазмоид должен действовать по принципу уранового снаряда, выделяя при взрыве колоссальную энергию.

По задумке изобретателей, плазменное оружие – это система, состоящая из плазмоида (средство поражения) и его пускового устройства (импульсного магнитного гидродинамического (МГД) генератора). Генератор разгоняет плазму в магнитном поле до скорости света и задает ей направление движения. Корректировка полета производится лазером.

Появление опытных прототипов в Советском Союзе

Приблизительным временем создания называется 1970 год. Основная цель – разработка импульсномагнититного гидродинамического генератора, с помощью которого можно было создать плазмоиды (или шаровые молнии) для поражения воздушных целей предполагаемого агрессора. В 1974 году начал работу открытый резонатор ДОР2, с помощью которого создавались управляемые искусственные шаровые молнии. Ионизированный газ или плазма, образовывается из нейтральных атомов и молекул и заряженных частиц ионов и электронов. Можно упомянуть создание секретной станции «Сурана», построенной недалеко от Нижнего Новгорода. Советский ученый Авраменко добился поразительных результатов при изучении ионизированных облаков. Были предприняты даже попытки использовать эти разработки в современном самолетостроении. В мечтах самолетостроителей – окружить самолет плазмой для уменьшения сопротивления воздуха и увеличения скорости в десятки раз. О перспективе таких разработок мало известно по понятным причинам.

Идеи плазменного оружия в современной России

После развала СССР финансирование разработок плазменного оружия России прекратилось, но это не значит, что русские ученые прекратили дальнейшие исследования. Работы велись на голом энтузиазме. Новые разработки плазменного оружия России начались на фоне ухудшающейся мировой политической обстановки. Выход США из договора по ПРО и укрепление блока НАТО у российских границ подстегнули руководство страны пересмотреть оборонную стратегию. Недавние заявления американского президента Дональда Трампа о бескомпромиссном перевооружении армии США также не способствуют уменьшению напряжения в отношениях между Россией и Западом.

Осенью 2017 года президентом В.В. Путиным будет рассмотрена государственная программа вооружений на 2018-2025 годы. В ней упоминается оружие, основанное на «новых физических принципах». Скорее всего, в ближайшее время будет внесена ясность по вопросу применения плазменного оружия в современном обществе. Если говорить о новейших разработках России – загадки и домыслы окружают эту тему. Есть обрывки слухов о каком-то проекте с применением плазменного щита, способного обеспечить защиту мирного неба России.

Интересно вспомнить встречу Б. Ельцина с американцами в Ванкувере в 1993 году. Российская сторона предлагала вблизи атолла Кваджалейн провести совместные испытания глобальной противоpaкетной обороны на базе российского плазменного оружия. Изобретатель плазменного оружия Римилий Авраменко вкратце упоминал о перспективах введения в эксплуатацию модели данной разработки. Она принесла бы пользу не только военным: с её помощью возможно уничтожать космический мусор или убирать озоновые дыры. Но, к сожалению, этот проект не воплотился в жизнь.

Чаяния и надежды, связанные с плазмой

Плазма открывает множество перспектив не только в военной сфере. Разработка плазменных генераторов позволяет перевести технику пpaктически на любое топливо без ущерба качеству.

Разработка плазменных технологий может дать толчок для дальнейшего развития технического прогресса.

Освоение плазменных технологий в США

Разработки плазменного оружия ведутся по всему миру, и США не являются исключением. Ярким примером можно считать в 1989 году, в рамках стратегической оборонной инициативы, вывод в космос прототипа пучкового оружия, которое, как предполагалось, могло генерировать нейтральные атомы водорода и тем самым сбивать советские paкеты. Об «успехах» этого оружия свидетельствует тот факт, что оно находится не на вооружении, а в музее космонавтики в Вашингтоне. Станция активного высокочастотного исследования ионосферы ХААРП – это тоже попытка изучения и создания плазменного оружия. Рельсотроны, разрекламированные с помпой оказались очередным блефом. В 2016 году в новостной ленте иногда проскальзывали сообщения о попытках американских военных протестировать плазменное оружие не cмepтельного действия. Таким образом, видно, что современные разработки плазменного оружия ведутся по всему миру, на них выделяются средства и лучшие умы человечества бьются над покорением плазмы.

Читать еще:  L7805cv как проверить мультиметром

Описание заявленных общих принципов работы

О технических хаpaктеристиках плазменного оружия можно только догадываться в силу засекреченности информации. Если говорить о плазмоидах, то это плазма в магнитном поле, созданном при помощи МГД генератора и имеющая скоростью света в направленном движении. На экранах популярных телепередач иногда упоминаются весьма интересные хаpaктеристики: возможные размеры, внутренняя энергия и время жизни плазмоида.

По мнению некоторых ученых, средняя температура на земле поднялась, а при таких темпах мир могут постигнуть катастрофы планетарного масштаба, выраженные в подтоплениях, засухах, ураганах, нехватке питьевой воды. Такие изменения вполне могут быть спровоцированы испытаниями плазменного оружия. Его освоение в военной сфере дает возможность не только перехватывать paкеты, но и психотронно влиять на массы людей и изменять климат. Мощнейшей радиолокационной станции ХААРП также приписывается способность влиять на погоду. Однако это только домыслы и догадки, так как официально никто не признал факта наличия у себя такого оружия.

Плазменные шапки-невидимки

В условиях современного боя основная ставка делается на внезапность нанесения удара. Но при этом неизбежно происходит демаскировка. Об этой проблеме задумывались еще советские ученые, предложив довольно оригинальный способ скрытия техники от систем радиоэлектронного обнаружения. Идея была в том, чтобы оборудовать самолеты специальными плазменными генераторами. Такие летательные аппараты, не сгорая, могли проходить плотные слои атмосферы, достигая земли за считаные секунды, совсем как баллистические paкеты.

Плазма обладает еще одним интересным свойством: она гасит электромагнитные импульсы во всех диапазонах. Казалось, найдено идеальное средство маскировки. Первые испытания проводились на истребителе МиГ-29, но результаты были неудовлетворительными. Плазма мешала работе бортовых компьютеров. В итоге было принято решение прикрывать только наиболее уязвимые для радаров части конструкции. Эта технология была применена на стратегическом бомбардировщике Ту-160.

Турецкое плазменное оружие

В 2013 году всему миру было объявлено о разработке боевых лазеров для турецкого морского флота. На проект, рассчитанный на шесть лет, выделяется свыше 50 миллионов долларов. Заявляется о двух моделях боевых лазеров. В 2015 году успешно прошли лабораторные испытания: была поражена цель на движущейся платформе. Объявлено, что перспективы нового вооружения не имеют аналогов в мире. Это оружие способно останавливать ядерную бомбу. Само население Турции не удержалось от сарказма по поводу новостного бума, причем доставалось и военным, и создателям «чудо оружия». Можно говорить с полной уверенностью лишь о том, что разработка современных и перспективных типов вооружения ведется не только сверхдержавами, обладающими весомыми «ядерными аргументами».

Заключение

Современные разработки плазменного оружия и других новейших типов вооружения с колоссальной разрушительной силой не дают ответа на вопрос, каким будет будущее на планете Земля. Возможно, эти изыскания откроют ящик Пандоры. Перспективы, открывающиеся в связи с развитием новых технологий, таят и множество опасностей для всего человечества. Вопрос не в том, будет ли создано плазменное оружие, боевые лазеры и многие другие вещи, которые на первый взгляд кажутся плодом воображения фантастов, а в том, когда это произойдет. События последних лет (введение санкций и ухудшение международной обстановки) являются спусковым механизмом перезапуска холодной войны, что, в свою очередь, является важнейшим фактором появления еще более разрушительных видов оружия.

А пока мир разделился на скептиков и оптимистов. Ведутся ожесточенные споры, разрешить которые смогут только появление или отсутствие оружия, работающего «на новых физических принципах» (для оборонной промышленности). Однако заявления высокопоставленных лиц говорят о том, что не бывает дыма без огня, и в будущем человечество ждет немало удивительных открытий.

Как создать плазменный тороид

При современном росте потрeбления энергии человечеству ненадолго хватит запасов угля, нефти, газа, урана — всего лишь на 100—200 лет. Вот почему ученые с таким энтузиазмом работают над новыми источниками энергии — управляемыми реакциями ядерного синтеза .

В одном литре воды содержится столько же энергии, сколько выделится при сжигании 400 л нефти. Но как добыть из воды это море энергии? Ученые отвечают: «c помощью реакции термоядерного синтеза».

В отличие от процесса ядерного деления, где энергия освобождается в результате расщепления тяжелых ядер на легкие осколки, при термоядерном синтезе происходит слияние легких ядер в более тяжелые. При этом выделяется огромное количество тепла. Реакции синтеза являются источником энергии в солнце и звездах.

Для пpaктических целей наибольший интерес представляют реакции синтеза, которые могут быть осуществлены в смеси дейтерия с тритием или в чистом дейтерии, встречающемся непосредственно в природе в виде тяжелой воды в морях и океанах.

В генераторе, работающем на принципе термоядерного синтеза, необходимо нагреть дейтерий до температуры 300—400 млн. градусов, а смесь трития с дейтерием — до температуры 40—50 млн. градусов. Только при такой высокой температуре и достаточной плотности (10 15 частиц в 1 см 3 ) слияние ядер изотопов водорода будет происходить с интенсивностью, при которой выделившаяся энергия будет больше затраченной.

При высокой температуре дейтерий полностью разделен на положительно заряженные ионы и электроны, как говорят, ионизирован. Такое состояние вещества получило название высокотемпературной плазмы. Отдельные частицы плазмы движутся с огромными скоростями, превышающими 1 000 км/сек, оказывая большое давление на стенки сосуда. Только магнитное поле, силовые линии которого подобны упругим резиновым шнурам, способно противостоять давлению плазмы. Поэтому подбор конфигурации магнитного поля, изолирующего плазму от стенок, стал другой важной задачей при создании термоядерного генератора.

Раньше других были начаты исследования метода, основанного на так называемом пинч-эффекте, то есть сжатии газа под действием протекающего по нему тока. Такой метод казался наиболее простым и перспективным (см. «ЮТ» № 11 за 1958 г.).

Представим себе цилиндрическую камеру, в которую с торцов введены электроды. Если газ немного откачать из камеры, а на электроды подать высокое напряжение, то произойдет пробой, в газе потечет сильный ток. Газ ионизируется, образуя плазму, которая под действием собственного магнитного поля тока начнет стягиваться к оси камеры. Однако плазма, созданная в таком устройстве, каждый раз соприкасалась с электродами и охлаждалась. Тогда прямую трубку свернули в тор (см. вкладку II — III). Разреженный газ тора превратился во вторичную обмотку трaнcформатора. Когда в первичной обмотке пропускается ток большой силы, во вторичной обмотке возникает электродвижущая сила, вызывающая ток в газе. Плазма греется подобно металлу в индукционной печи, а магнитное поле тока плазмы стягивает ее в кольцо и изолирует от стенок.

Казалось, принципиальных осложнений нет: плазму можно создать, нагреть и термоизолировать. Но в первых же экспериментах плазма показала свой неспокойный хаpaктер. Из-за быстро развивающихся процессов неустойчивостей, получивших название «перетяжек» и «змей» (см. вкладку), она уходила с оси тора и касалась стенок камеры.

Именно неустойчивость плазмы стала камнем преткновения на пути к океану термоядерной энергии.

Причину ее возникновения можно объяснить следующим образом. Силовые линии магнитного поля тока можно представить как набор растянутых эластичных колечек, которые, во-первых, стремятся сократиться в диаметре и, во-вторых, расталкивают друг друга в продольном направлении. Сокращение колечек приводит к образованию перетяжек, а их взаимное расталкивание действует на шнур с током, как изгиб на сжатую пружину, которая, как известно, становится неустойчивой к изгибу.

Из рисунка на вкладке следует, что если в шнуре случайно возникает изгиб, то плотность силовых линий с внутренней стороны становится больше, чем снаружи. Изображенные стрелками магнитные силы стремятся увеличить изгиб еще больше.

Плазма дома.
Каждый раз, когда говорят о плазме, поражает космический масштаб затронутой темы. Космические корабли с плазменными двигателями, океан плазменной энергии — вот области применения четвертого состояния вещества.

Ее получение и использование связывают обычно со сложными. хитроумными устройствами. Все это может создать впечатление, что само плазменное состояние есть нечто уникальное. стоящее на грани возможного

А между тем плазма присутствует в наших квартирах и приспособление, в котором она образуется, можно приобрести в любом универмаге. Речь идет о газосветных и люминесцентных лампах — как их называют, лампах дневного света.

свечение газосветной лампы вызывается электрическим разрядом, постоянно пробивающим ее сильно разреженную газовую атмосферу. Атомы газа, возбужденные разрядом, теряют часть своих электронов — так внутри трубки возникает смесь ионов и электронов, — другими словами, плазма.

Итак, чтобы получить плазму в домашних условиях, достаточно щелкнуть выключателем вашей лампы дневного света.

Исследования показали, что эти неустойчивости можно в значительной степени устранить, если стенки тора сделать из металла. Еще лучше действует ток, пропускаемый по обмоткам, навитым на камеру тора. Создаваемое при этом дополнительное магнитное поле, силовые линии которого параллельны стенкам тора, препятствуют возникновению нестабильностей. Если происходит перетяжка или изгиб шнура, то силовые линии дополнительного магнитного поля, подобно натянутым струнам, стремятся вернуться в прежнее положение и выпрямить шнур.

Свойство стабилизации плазменного шнура металлическим кожухом и дополнительным магнитным полем использовано в установке «Токомак», построенной в Институте атомной энергии имени И. В. Курчатова.

Сейчас исследуется возможность получения горячей плазмы в установках, называемых магнитными ловушками — ловушками с «магнитными пробками».

Такая ловушка обычно представляет собой прямую цилиндрическую камеру, из которой откачан воздух. На камеру надвинуты катушки, по которым течет электрический ток, создающий магнитное поле. Токовые обмотки сделаны так, что магнитное поле, слабое в центральной части, значительно возрастает к торцам трубы.

Торцовые участки поля и играют роль отражателей частиц — магнитных «пробок», или, как их еще называют, магнитных «зеркал». Внутри камеры создают плазму, частицы которой, двигаясь вдоль силовой линии из области слабого поля в область торца, испытывают действие силы, стремящейся отбросить их обратно.

На рисунке схематически изображен метод нагрева плазмы нарастающим магнитным полем.

Этот принцип используется в установке «Огра» — гигантской ловушке, построенной в Институте атомной энергии имени И. В. Курчатова. Диаметр камеры «Огры» 1 м 40 см, длина — 20 м. Силовые линии магнитного поля, в центральной области почти параллельные стенкам камеры, образуют магнитные «пробки» на торцах трубы. Внутрь ловушки с помощью инжектора впрыскиваются молекулярные ионы водорода (или дейтерия), предварительно разогнанные в специальном ускорителе. Попав в ловушку, молекулярный ион начинает двигаться по винтовой траектории к магнитной «пробке», отражается от нее, идет к другой магнитной «пробке», снова отражается и так долго колeблется в центральной области, пока снова не вернется к инжектору и не погибнет на его оболочке. Но на своем пути молекулярный ион может столкнуться с молекулами газа или с другими ионами. При этом он разваливается на нейтральный атом и атомарный ион. Нейтральный атом не испытывает воздействия магнитного поля и улетает на стенку камеры, а атомарный ион, вращаясь по спирали малого радиуса, захватывается в ловушку. Если инжекцию вести непрерывно, то можно накопить много атомарных ионов и создать высокотемпературную плазму.

Так же как и в тороидальных установках, плазма неспокойна и здесь. Она старается просочитъся сквозь силовые линии магнитного поля и уйти к стенкам вследствие «желобковой», или, как еще ее называют, «языковой» неустойчивости. Возник-

новение языковой неустойчивости плазмы связано с формой самого магнитного поля — ловушки. Напряженность магнитного поля нарастает в продольном направлении в обе стороны от центральной области, а в радиальном направлении поле спадает. Просачивание плазмы сквозь силовые линии магнитного поля происходит значительно легче по направлению ослабления поля. При этом образование «языков» связано с тем, что на поверхности плазмы происходит разделение зарядов. Электроны оказываются смещенными относительно ионов. Возникающее при этом электрическое поле заставляет частицы плазмы двигаться поперек силовых линии магнитного поля. Небольшой «язык» быстро растет, и плазма достигает стенки камеры. Поверхность плазмы может одновременно породить несколько таких «языков».

Но раз известна болезнь, то можно думать и о лекарстве. Вытекание плазмы значительно ослабляется, если и по радиусу поле сделать также нарастающим. Этого можно добиться, если вдоль камеры, на ее поверхности, поместить металлические стержни и пропускать по ним электрический ток. Известно, что магнитное поле тока растет при приближении к проводнику. Благодаря комбинации магнитного поля стержней с полем самой ловушки можно получить нарастание магнитного поля вдоль радиуса. Экспериментально показано, что в ловушке с такой конфигурацией магнитного поля образование «языков» на поверхности плазмы сильно затруднено и плазма удерживается более надежно.

Так, шаг за шагом, создаются все более сложные конфигурации магнитных полей, все труднее и труднее ручейкам плазмы расплескивать свою энергию на пути к человеку.

Н . БРЕВНОВ, научный сотрудник Института атомной энергии имени И . В. Курчатова


Цветовая маркировка сип 4 по цветам

Цветовая маркировка сип 4 по цветам Цветовая маркировка сип 4 по цветам Свойства, маркировка и хаpaктеристики кабеля СИП В зависимости от марки, электромонтажный СИП кабель предназначен для...

19 05 2024 21:50:48

Масло 2 х тактное хаpaктеристики

Масло 2 х тактное хаpaктеристики Масло 2 х тактное хаpaктеристики Какое выбрать масло для двухтактных двигателей: отличия, хаpaктеристики Масло для двухтактных двигателей необходимо...

18 05 2024 11:36:20

Труба бшгд гост 8732 78

Труба бшгд гост 8732 78 Труба бшгд гост 8732 78 ГОСТ 8732-78 ТРУБЫ СТАЛЬНЫЕ БЕСШОВНЫЕ ГОРЯЧЕДЕФОРМИРОВАННЫЕ Сортамент Seamless hot-deformed steel pipes . Range of sizes ОКП 13...

17 05 2024 14:20:55

Какого цвета провод фазы в двухжильном проводе

Какого цвета провод фазы в двухжильном проводе Какого цвета провод фазы в двухжильном проводе Какими бывают цвета проводов фазы, ноля и земли в квартирах или частных домах Играют ключевую роль для...

16 05 2024 2:58:49

Как отбить потолок без лазерного уровня

Как отбить потолок без лазерного уровня Как отбить потолок без лазерного уровня Как сделать разметку потолка под гипсокартон? Как сделать разметку потолка под гипсокартон? Гипсокартонный потолок...

15 05 2024 7:59:55

Мощность трaнcформатора микроволновой печи

Мощность трaнcформатора микроволновой печи Мощность трaнcформатора микроволновой печи Tрaнcформатор микроволновки МОТ Для питания магнетрона микроволновой печи традиционно применяется выпрямленное...

14 05 2024 2:39:21

Сталь х12м хаpaктеристики применение

Сталь х12м хаpaктеристики применение Сталь х12м хаpaктеристики применение Сталь марки Х12М Поставщик Ауремо ООО www.auremo.org Купить: Санкт-Петербург +7(812)680-16-77, Днепр...

13 05 2024 2:14:47

Как получить резину из каучука

Как получить резину из каучука Как получить резину из каучука Резина Кроме сложных веществ наподобие полиэтиленов, представляющих из себя высокомолекулярные полимеры, существует класс...

12 05 2024 23:51:43

Что такое фото реле

Что такое фото реле Что такое фото реле Фотореле: устройство, назначение и виды Фотореле — маленькое, но умное устройство, которое избавит от необходимости самолично включать...

11 05 2024 3:20:33

Как проверить вольтметр на исправность

Как проверить вольтметр на исправность Измерение напряжения, как пользоваться и работать вольтметром Вольтметр — это прибор, который служит для измерения...

10 05 2024 3:57:21

Прибор цешка почему так называется

Прибор цешка почему так называется Прибор цешка почему так называется Измерительный прибор Ц-20 Те, кто во времена Советского Союза занимался радиотехникой, имели в своем арсенале массу...

09 05 2024 18:42:57

Духовой шкаф электрический встраиваемый какая розетка нужна

Духовой шкаф электрический встраиваемый какая розетка нужна Духовой шкаф электрический встраиваемый какая розетка нужна Какая розетка нужна под духовой шкаф? Для начала надо открыть инструкцию к духовому шкафу и...

08 05 2024 22:56:25

Синтезатор Reaktor 6.3 обзавёлся наглядным интерфейсом коммутации модулей

Синтезатор Reaktor 6.3 обзавёлся наглядным интерфейсом коммутации модулей  Обновление синтезатора Native Instruments Reaktor 6.3 принесло модульный интерфейс и возможность коммутации кабелей прямо в окне инструмента....

07 05 2024 0:18:19

Освещение рабочей зоны на кухне фото

Освещение рабочей зоны на кухне фото Освещение рабочей зоны на кухне фото Подсветка рабочей зоны: выбираем варианты От того, насколько правильно организовано освещение, зависит комфорт тех,...

06 05 2024 18:33:32

Как припаять светодиод к подложке

Как припаять светодиод к подложке Как правильно паять светодиоды SMD Монтаж компонентов электронных схем выполняется разными способами. Одним из наиболее...

05 05 2024 17:45:54

Как снять грушу с бетономешалки

Как снять грушу с бетономешалки Как снять грушу с бетономешалки Дача48.ру Всё своими руками Ремонт бетономешалки Содержание В этой статье речь пойдет о ремонте бетономешалки СБР-132А...

04 05 2024 14:14:10

За синтезатор G8TOR можно заплатить любую сумму

За синтезатор G8TOR можно заплатить любую сумму  Мощный синтезатор 2getheraudio G8TOR продается по особой бизнес-модели, которая позволит вам обзавестись мощным плагином за копейки!...

03 05 2024 3:50:52

Линейка электрогитар Epiphone 2020 года, вдохновлённых Gibson

Линейка электрогитар Epiphone 2020 года, вдохновлённых Gibson  Epiphone представила гитары 2020 года, которые выйдут в серии Inspired By Gibson. Красивые и недорогие инструменты, но что-то в них не то....

02 05 2024 19:17:14

Как уменьшить мощность паяльника

Как уменьшить мощность паяльника Как уменьшить мощность паяльника All-Audio.pro Статьи, Схемы, Справочники Как уменьшить мощность паяльника Все паяльщики, использующие простые паяльники с...

01 05 2024 16:56:39

Как на схемах обозначается фаза и ноль

Как на схемах обозначается фаза и ноль Как на схемах обозначается фаза и ноль Обозначение фазы и нуля в электрике В процессе самостоятельной установки и подключения электрооборудования (этом...

30 04 2024 12:19:17

FLASH: полифонический микротональный синтезатор, встроенный в MIDI-разъём

FLASH: полифонический микротональный синтезатор, встроенный в MIDI-разъём  Компания H-Pi Instruments выпустила синтезатор FLASH, встроенный в MIDI-коннектор. Девайс предлагает 16 голосов, FM-синтез и другие возможности....

29 04 2024 2:49:11

Симистор t405 600b tr t4 0560 хаpaктеристики

Симистор t405 600b tr t4 0560 хаpaктеристики Симистор t405 600b tr t4 0560 хаpaктеристики Симистор t405 600b tr t4 0560 хаpaктеристики Mouser Electronics has disabled TLS 1.0 to remain in alignment...

28 04 2024 7:12:24

NAMM 2020: UAD LUNA — революционная программная среда звукозаписи или очередная ненужная DAW?

NAMM 2020: UAD LUNA — революционная программная среда звукозаписи или очередная ненужная DAW?  Программная среда для звукозаписи UAD LUNA эмулирует работу консолей Rupert Neve Designs, кассетных рекордеров и обещает самые точные плагины. Взлетит ли?...

27 04 2024 2:59:43

Как варить вертикальный угловой шов

Как варить вертикальный угловой шов Как варить вертикальный угловой шов Особенности сварки угловых швов Виды угловых швов Сварка углового шва представляет собой соединение двух металлических...

26 04 2024 1:18:39

Какой краскопульт лучше электрический или пневматический

Какой краскопульт лучше электрический или пневматический Какой краскопульт лучше электрический или пневматический Как выбрать краскопульт для дома и покраски автомобиля Покрасить кузов машины, стены дома или...

25 04 2024 7:11:15

Снегоуборщик бензиновый MTD M 53: обзор, отзывы

Снегоуборщик бензиновый MTD M 53: обзор, отзывы Снегоуборщик бензиновый MTD M 53: обзор, отзывы Технические хаpaктеристики снегоуборщика MTD M 53 Рассматривая варианты покупки снегоуборочной техники для...

24 04 2024 12:16:10

Как просверлить отверстие в швеллере

Как просверлить отверстие в швеллере Как просверлить отверстие в швеллере Просверлить 200-ый швеллер - ваши советы? Инструмент - ручная дрель. Станка нет.Нужно 6-10 монтажных отверстий...

23 04 2024 21:44:38

Генерация аккордов: как подобрать интересные аккорды для своих аранжировок в Logic Pro X, Ableton Live и PreSonus Studio One

Генерация аккордов: как подобрать интересные аккорды для своих аранжировок в Logic Pro X, Ableton Live и PreSonus Studio One  Рассказываем, как работает генерация аккордов и как генерировать трезвучия из одной ноты в трех популярных DAW. Интересные аккорды доступны всем....

22 04 2024 18:34:53

Сечение кабеля по мощности таблица 220в медь

Сечение кабеля по мощности таблица 220в медь Сечение кабеля по мощности таблица 220в медь Сечение медного провода по мощности - Таблица Надежная и безопасная работа любых электрических приборов и...

21 04 2024 21:36:26

Как наточить охотничий нож в домашних условиях

Как наточить охотничий нож в домашних условиях Как наточить охотничий нож в домашних условиях Как заточить охотничий нож: угол, приспособление, полезные советы 18 Ноября, 2018 Снаряжение Иван Гресько...

20 04 2024 8:49:16

Какие бывают резьбы на трубах

Какие бывают резьбы на трубах Какие бывают резьбы на трубах Трубная резьба - типы, размеры, таблица Резьба – это спираль с постоянным шагом, нарезаемая на поверхности цилиндрической...

19 04 2024 22:24:52

Мельхиор что за металл стоимость

Мельхиор что за металл стоимость Мельхиор что за металл стоимость Лом мельхиора — виды. Применение мельхиора Основная масса жителей России знает о мельхиоре только то, что это столовое...

18 04 2024 5:41:37

Как подключить три фазы на 220

Как подключить три фазы на 220 Как подключить три фазы на 220 Как подключить трехфазный двигатель к сети 220 вольт Многие хозяева, особенно владельцы частных домов или дач, используют...

17 04 2024 16:19:25

Снегоуборщик Stiga Snow Cube: обзор, отзывы

Снегоуборщик Stiga Snow Cube: обзор, отзывы Снегоуборщик Stiga Snow Cube: обзор, отзывы Снегоуборщики Stiga. Обзор модельного ряда. Технические хаpaктеристики. Инструкции по эксплуатации Описание...

16 04 2024 13:31:41

Сверла какой фирмы лучше

Сверла какой фирмы лучше Сверла какой фирмы лучше Какие сверла по металлу самые лучшие. Как выбрать, обзор производителей Сверление металлов это технологический процесс,...

15 04 2024 16:36:34

Как поставить встраиваемую посудомоечную машину

Как поставить встраиваемую посудомоечную машину Как поставить встраиваемую посудомоечную машину Установка встраиваемой посудомоечной машины в готовую кухню: пошаговая инструкция, советы мастеров...

14 04 2024 3:12:27

Степлер электрический рейтинг лучшие модели

Степлер электрический рейтинг лучшие модели Степлер электрический рейтинг лучшие модели 10 лучших строительных степлеров Строительные степлеры (или скобозабиватели) полезны во многих случаях – от...

13 04 2024 2:10:47

Дробилка для зерна своими руками чертежи

Дробилка для зерна своими руками чертежи Дробилка для зерна своими руками чертежи Простая зернодробилка своими руками (чертежи) Как ни странно, дробить зерно в домашних условиях можно не хуже чем...

12 04 2024 16:59:58

Способы определения мощности тока

Способы определения мощности тока Способы определения мощности тока Методы измерения мощности в электрических цепях Очень часто при проектировании электрических схем радиолюбители...

11 04 2024 3:58:10

Как проверить диодный мост генератора на газели

Как проверить диодный мост генератора на газели Как проверить диодный мост генератора на газели Неисправности генератора: как проверить диодный мост своими руками Всем здравствуйте! Предлагаю вместе со...

10 04 2024 3:25:24

iZotope Neutron 3 умеет выставлять оптимальный уровень громкости всех дорожек проекта

iZotope Neutron 3 умеет выставлять оптимальный уровень громкости всех дорожек проекта  Обновление iZotope Neutron 3 добавило новый модуль Sculptor, поумневшего помощника Mix Assistant, функцию определения маскировки частот и другие фишки....

09 04 2024 12:48:45

Как написать биографию музыканта: о чём рассказывать слушателям, чтобы они заинтересовались вашим творчеством

Как написать биографию музыканта: о чём рассказывать слушателям, чтобы они заинтересовались вашим творчеством  Как написать биографию музыканта для пресс-релиза и разделов "О себе" так, чтобы читатели дочитали её до конца и стали вашими слушателями....

08 04 2024 3:22:50

На Reverb продают редкую золотую версию BOSS DS-1 Distortion

На Reverb продают редкую золотую версию BOSS DS-1 Distortion  На площадке Reverb засветился золотой BOSS DS-1 Distortion. Педаль очень редкая — более 20 лет назад японцы сделали всего 6 таких педалей....

07 04 2024 21:44:55

Как регулировать обороты асинхронного электродвигателя 220в

Как регулировать обороты асинхронного электродвигателя 220в Как регулировать обороты асинхронного электродвигателя 220в Способы регулировки оборотов вращения асинхронных двигателей Достаточно часто режим работы...

06 04 2024 0:55:18

Кто должен менять счетчик на лестничной площадке

Кто должен менять счетчик на лестничной площадке Кто должен менять счетчик на лестничной площадке Кто должен менять счетчик электроэнергии на лестничной площадке 2016 В России существует регулярная...

05 04 2024 23:11:48

Методики High Concept и Low Concept в продюсировании музыки

Методики High Concept и Low Concept в продюсировании музыки  Методы High Concept и Low Concept, использующиеся при написании сценариев в кино, можно применить в музыке. Это даст свои плюсы и минусы при релизах....

04 04 2024 2:12:54

Прожектор с датчиком день ночь

Прожектор с датчиком день ночь Прожектор с датчиком день ночь Светодиодный прожектор с датчиком освещенности Для освещения территории, расположенной возле частного дома всегда...

03 04 2024 10:15:25

Как определить медь в домашних условиях

Как определить медь в домашних условиях Как определить медь в домашних условиях Определяем подлинность меди подручными средствами Медь является широко распространенным металлом, ведь человек...

02 04 2024 11:14:14

Какие бывают роботы пылесосы

Какие бывают роботы пылесосы Какие бывают роботы пылесосы Как выбрать робот пылесос: основные функции, лучшие модели На рынке представлено огромное количество разнообразных моделей, и...

01 04 2024 23:21:41

В чем измеряется шум в помещении

В чем измеряется шум в помещении В чем измеряется шум в помещении В чем измеряется шум в помещении Автострахование Жилищные споры Земельные споры Административное право Участие в долевом...

31 03 2024 5:14:34

Еще:
Музыка -1 :: Музыка -2 :: Музыка -3 :: Музыка -4 :: Музыка -5 :: Музыка -6 :: Музыка -7 :: Музыка -8 :: Музыка -9 :: Музыка -10 :: Музыка -11 ::