Диагональ правильного шестиугольника формула > Как создать музыку?
Музыка: как это делается    

Диагональ правильного шестиугольника формула

Диагональ правильного шестиугольника формула

0a9e6d14

Правильный шестиугольник

Знаете ли вы, как выглядит правильный шестиугольник?
Этот вопрос задан не случайно. Большинство учащихся 11 класса не знают на него ответа.

Правильный шестиугольник — такой, у которого все стороны равны и все углы тоже равны.

Железная гайка. Снежинка. Ячейка сот, в которых живут пчелы. Молекула бензола. Что общего у этих объектов? — То, что все они имеют правильную шестиугольную форму.

Многие школьники теряются, видя задачи на правильный шестиугольник, и считают, что для их решения нужны какие-то особые формулы. Так ли это?

Проведем диагонали правильного шестиугольника. Мы получили шесть равносторонних треугольников.

Мы знаем, что площадь правильного треугольника: .

Тогда площадь правильного шестиугольника — в шесть раз больше.

, где — сторона правильного шестиугольника.

Обратите внимание, что в правильном шестиугольнике расстояние от его центра до любой из вершин одинаково и равно стороне правильного шестиугольник.

Значит, радиус окружности, описанной вокруг правильного шестиугольника, равен его стороне.
Радиус окружности, вписанной в правильный шестиугольник, нетрудно найти.
Он равен .
Теперь вы легко решите любые задачи ЕГЭ, в которых фигурирует правильный шестиугольник.

Ты нашел то, что искал? Поделись с друзьями!

. Найдите радиус окружности, вписанной в правильный шестиугольник со стороной .

Радиус такой окружности равен .

. Чему равна сторона правильного шестиугольника, вписанного в окружность, радиус которой равен 6?

Мы знаем, что сторона правильного шестиугольника равна радиусу описанной вокруг него окружности.

Звоните нам: 8 (800) 775-06-82 (бесплатный звонок по России) +7 (495) 984-09-27 (бесплатный звонок по Москве)

Или нажмите на кнопку «Узнать больше», чтобы заполнить контактную форму. Мы обязательно Вам перезвоним.

Обучающее видео
БЕСПЛАТНО

Техническая поддержка:
help@ege-study.ru (круглосуточно)

Пробные репетиционные ЕГЭ: пройдите бесплатное тестирование! Все, как на настоящем ЕГЭ.
Звоните, чтобы записаться:

8 (495) 984-09-27 или 8 (800) 775-06-82

Для нормального функционирования и Вашего удобства, сайт использует файлы cookies. Это совершенно обычная пpaктика.Продолжая использовать портал, Вы соглашаетесь с нашей Политикой конфиденциальности.

Все поля обязательны для заполнения

Премиум

Вся часть 2 на ЕГЭ по математике, от задачи 13 до задачи 19. То, о чем не рассказывают даже ваши репетиторы. Все приемы решения задач части 2. Оформление задач на экзамене. Десятки реальных задач ЕГЭ, от простых до самых сложных.

Видеокурс «Премиум» состоит из 7 курсов для освоения части 2 ЕГЭ по математике (задачи 13-19). Длительность каждого курса — от 3,5 до 4,5 часов.

  1. Уравнения (задача 13)
  2. Стереометрия (задача 14)
  3. Неравенства (задача 15)
  4. Геометрия (задача 16)
  5. Финансовая математика (задача 17)
  6. Параметры (задача 18)
  7. Нестандартная задача на числа и их свойства (задача 19).

Здесь то, чего нет в учебниках. Чего вам не расскажут в школе. Приемы, методы и секреты решения задач части 2.

Каждая тема разобрана с нуля. Десятки специально подобранных задач, каждая из которых помогает понять «подводные камни» и хитрости решения. Автор видеокурса Премиум — репетитор-профессионал Анна Малкова.

Получи пятерку

Видеокурс «Получи пятерку» включает все темы, необходимые для успешной сдачи ЕГЭ по математике на 60-65 баллов. Полностью все задачи 1-13 Профильного ЕГЭ по математике. Подходит также для сдачи Базового ЕГЭ по математике. Если вы хотите сдать ЕГЭ на 90-100 баллов, вам надо решать часть 1 за 30 минут и без ошибок!

Курс подготовки к ЕГЭ для 10-11 класса, а также для преподавателей. Все необходимое, чтобы решить часть 1 ЕГЭ по математике (первые 12 задач) и задачу 13 (тригонометрия). А это более 70 баллов на ЕГЭ, и без них не обойтись ни стобалльнику, ни гуманитарию.

Вся необходимая теория. Быстрые способы решения, ловушки и секреты ЕГЭ. Разобраны все актуальные задания части 1 из Банка заданий ФИПИ. Курс полностью соответствует требованиям ЕГЭ-2018.

Курс содержит 5 больших тем, по 2,5 часа каждая. Каждая тема дается с нуля, просто и понятно.

Сотни заданий ЕГЭ. Текстовые задачи и теория вероятностей. Простые и легко запоминаемые алгоритмы решения задач. Геометрия. Теория, справочный материал, разбор всех типов заданий ЕГЭ. Стереометрия. Хитрые приемы решения, полезные шпаргалки, развитие прострaнcтвенного воображения. Тригонометрия с нуля — до задачи 13. Понимание вместо зубрежки. Наглядное объяснение сложных понятий. Алгебра. Корни, степени и логарифмы, функция и производная. База для решения сложных задач 2 части ЕГЭ.

Сразу после оплаты вы получите ссылки на скачивание видеокурсов и уникальные ключи к ним.

Задачи комплекта «Математические тренинги — 2019» непростые. В каждой – интересные хитрости, «подводные камни», полезные секреты.

Варианты составлены так, чтобы охватить все возможные сложные задачи, как первой, так и второй части ЕГЭ по математике.

Как пользоваться?

  1. Не надо сразу просматривать задачи (и решения) всех вариантов. Такое читерство вам только помешает. Берите по одному! Задачи решайте по однойи старайтесь довести до ответа.
  2. Если почти ничего не получилось – начинать надо не с решения вариантов, а с изучения математики. Вам помогут книга для подготовки к ЕГЭи Годовой Онлайн-курс.
  3. Если вы правильно решили из первого варианта Маттренингов 5-7 задач – значит, знаний не хватает. Смотри пункт 1: Книгаи Годовой Онлайн-курс!
  4. Обязательно разберите правильные решения. Посмотрите видеоразбор – в нем тоже много полезного.
  5. Можно решать самостоятельно или вместе с друзьями. Или всем классом. А потом смотреть видеоразбор варианта.

Стоимость комплекта «Математические тренинги – 2019» — всего 1100 рублей. За 5 вариантов с решениями и видеоразбором каждого.

Свойство диагоналей правильного шестиугольника

Правильным шестиугольником называется выпуклый многоугольник с шестью одинаковыми сторонами и шестью углами.

Внутренние углы в правильном шестиугольнике равны (120^circ):
(alpha = 120^circ)

Апофема правильного шестиугольника (перпендикуляр, проведенный из центра к любой стороне)
(m = alargefrac >
ormalsize)

Радиус вписанной окружности правильного шестиугольника равен апофеме:
(r = m = alargefrac >
ormalsize)

Радиус описанной окружности равен стороне правильного шестиугольника:
(R = a)

Периметр правильного шестиугольника
(P = 6a)

Площадь правильного шестиугольника
(S = pr = largefrac >
ormalsize),
где (p) − полупериметр шестиугольника.

Самая известная фигура, у которой больше четырех углов — это правильный шестиугольник. В геометрии он часто используется в задачах. А в жизни именно такой вид имеют соты на срезе.

Чем он отличается от неправильного?

Во-первых, шестиугольником является фигура с 6 вершинами. Во-вторых, он может быть выпуклым или вогнутым. Первый отличается тем, что четыре вершины лежат по одну сторону от прямой, проведенной через две другие.

В-третьих, правильный шестиугольник хаpaктеризуется тем, что все его стороны равны. Причем каждый угол фигуры тоже имеет одинаковое значение. Чтобы определить сумму всех его углов, потребуется воспользоваться формулой: 180º * (n — 2). Здесь n — число вершин фигуры, то есть 6. Простой расчет дает значение в 720º. То есть каждый угол равен 120 градусам.

В повседневной деятельности правильный шестиугольник встречается в снежинке и гайке. Химики видят ее даже в молекуле бензола.

Какие свойства требуется знать при решении задач?

К тому, что указано выше, следует добавить:

  • диагонали фигуры, проведенные через центр, делят ее на шесть треугольников, которые являются равносторонними;
  • сторона правильного шестиугольника имеет значение, которое совпадает с радиусом описанной около него окружности;
  • используя такую фигуру, есть возможность заполнить плоскость, причем между ними не получится пропусков и не будет наложений.

Введенные обозначения

Традиционно сторона правильной геометрической фигуры обозначается латинской буквой «а». Для решения задач требуются еще площадь и периметр, это S и P соответственно. В правильный шестиугольник бывает вписана окружность или описана около него. Тогда вводятся значения для их радиусов. Обозначаются они соответственно буквами r и R.

В некоторых формулах фигурируют внутренний угол, полупериметр и апофема (являющаяся перпендикуляром к середине любой стороны из центра многоугольника). Для них используются буквы: α, р, m.

Читать еще:  Как правильно сматывать кабель

Формулы, которые описывают фигуру

Для расчета радиуса вписанной окружности потребуется такая: r = (a * √3) / 2, причем r = m. То есть такая же формула будет и для апофемы.

Поскольку периметр шестиугольника — это сумма всех сторон, то он определится так: P = 6 * a. С учетом того, что сторона равна радиусу описанной окружности, для периметра существует такая формула правильного шестиугольника: P = 6 * R. Из той, что приведена для радиуса вписанной окружности, выводится зависимость между а и r. Тогда формула принимает такой вид: Р = 4 r * √3.

Для площади правильного шестиугольника может пригодиться такая: S = p * r = (a 2 * 3 √3) / 2.

Задачи

№ 1. Условие. Имеется правильная шестиугольная призма, каждое ребро которой равно 4 см. В нее вписан цилиндр, объем которого необходимо узнать.

Решение. Объем цилиндра определяется как произведение площади основания на высоту. Последняя совпадает с ребром призмы. А она равна стороне правильного шестиугольника. То есть высота цилиндра — тоже 4 см.

Чтобы узнать площадь его основания, потребуется вычислить радиус вписанной в шестиугольник окружности. Формула для этого указана выше. Значит, r = 2√3 (см). Тогда площадь круга: S = π * r 2 = 3,14 * (2√3 ) 2 = 37,68 (см 2 ).

Осталось сосчитать объем: V = 37, 68 * 4 = 150,72 (см 3 ).

Ответ. V = 150,72 см 3 .

№ 2. Условие. Вычислить радиус окружности, которая вписана в правильный шестиугольник. Известно, что его сторона равна √3 см. Чему будет равен его периметр?

Решение. Эта задача требует использования двух из указанных формул. Причем их необходимо применять, даже не видоизменяя, просто подставить значение стороны и вычислить.

Таким образом, радиус вписанной окружности получается равным 1,5 см. Для периметра оказывается верным такое значение: 6√3 см.

Ответ. r = 1,5 см, Р = 6√3 см.

№ 3. Условие. Радиус описанной окружности равен 6 см. Какое значение в этом случае будет у стороны правильного шестиугольника?

Решение. Из формулы для радиуса вписанной в шестиугольник окружности легко получается та, по которой нужно вычислять сторону. Ясно, что радиус умножается на два и делится на корень из трех. Необходимо избавиться от иррациональности в знаменателе. Поэтому результат действий принимает такой вид: (12 √3) / (√3 * √3), то есть 4√3.

Правильный многоугольник

Правильный многоугольник — это многоугольник, все стороны и углы которого равны.

Вокруг правильного многоугольника можно описать окружность и в него можно вписать окружность. Центры этих окружностей совпадают.

Правильный шестиугольник

Правильный шестиугольник – это шестиугольник, все стороны и углы которого равны.

Описанный многоугольник

Если все стороны многоугольника касаются некоторой окружности , то он называется описанным многоугольником .

Диагональ правильного шестиугольника формула

На этой странице вы найдете калькуляторы и формулы, которые помогут найти и рассчитать площадь правильного шестиугольника по стороне или радиусам вписанной и описанной окружностей.

Шестиугольник представляет собой многоугольник, к которого все внутренние углы равны 120 градусов, а все стороны равны между собой.

Через сторону

Формула для нахождения площади правильного шестиугольника через сторону:

cdot a^2> > , где a — сторона шестиугольника.

Через радиус вписанной окружности

Формула для нахождения площади правильного шестиугольника через радиус вписанной окружности:

cdot r^2> , где r — радиус вписанной окружности.

Через радиус описанной окружности

Формула для нахождения площади правильного шестиугольника через радиус описанной окружности:

cdot R^2> > , где R — радиус описанной окружности.

Интересные факты

Форму правильного шестиугольника имеют пчелиные соты, сечение гаек и карандашей, кристаллическая решетка графита.

Шестиугольник — это многоугольник, общее количество углов (вершин) которого равно шести.

Выпуклый шестиугольник — это многоугольник, с общим количеством вершин, равным шести, при этом все точки такого шестиугольника лежат по одну сторону от прямой, которая проведена между двумя любыми соседними его вершинами.

Чему равна сумма углов выпуклого шестиугольника?

Сумма углов выпуклого шестиугольника определяется по общей формуле 180°(n-2) и равна 180 ( 6 — 2 ) = 720 градусов. См. теорему о сумме углов многоугольника.

При решении задач для нахождения площади произвольного (неправильного) шестиугольника используют метод трапеций, который заключается в разбиении фигуры на отдельные трапеции, площадь каждой из которых можно найти по известным всем формулам.

Правильный шестиугольник

Правильный шестиугольник — это шестиугольник, все стороны которого равны между собой.

Свойства правильного шестиугольника

  • все внутренние углы равны между собой
  • каждый внутренний угол правильного шестиугольника равен 120 градусам
  • все стороны равны между собой
  • сторона правильного шестиугольника равна радиусу описанной окружности
  • правильный шестиугольник заполняет плоскость без пробелов и наложений
  • всі внутрішні кути рівні між собою
  • кожен внутрішній кут правильного шестикутника дорівнює 120 градусам
  • всі сторони рівні між собою сторона правильного шестикутника дорівнює радіусу описаного кола
  • правильний шестикутник заповнює плоскість без пропусків і накладень

Формулы для правильного шестиугольника

(по порядку следования формул)

  • Радиус описанной окружности (R) правильного шестиугольника равен его стороне (t)
  • Все внутренние углы равны 120 градусам
  • Радиус вписанной окружности (r) равен корню из трех, деленному на два и умноженному на длину стороны t (радиус описанной окружности R)
  • Периметр правильного шестиугольника (P) равен шести радиусам описанной окружности (R) или четыре корня из трех, умноженным на радиус вписанной окружности (r)
  • Площадь правильного шестиугольника равна трем корням из трех пополам, умноженным на квадрат радиуса описанной окружности (R) или квадрат стороны (t); либо площадь правильного шестиугольника равна двум корням из трех, умноженным на квадрат радиуса вписанной окружности (t)

Задача

Найти объем цилиндра, вписанного в правильную шестиугольную призму, каждое ребро которой равно t .

Решение.
Так как высота цилиндра Н равна высоте призмы и равна а, достаточно найти радиус основания цилиндра, который будет равен радиусу окружности, вписанной в правильный шестиугольник.

Знайти об’єм циліндра, вписаного в правильну шестикутну призму, кожне ребро якої дорівнює t .

Рiшення.
Так як висота циліндра Н дорівнює висоті призми і дорівнює а, достатньо знайти радіус основи циліндра, який буде дорівнювати радіусу кола, вписаного в правильний шестикутник.

Пра­виль­ным ше­сти­уголь­ни­ком на­зы­ва­ет­ся ше­сти­уголь­ник, у ко­то­ро­го все сто­ро­ны и углы равны. Пра­виль­ный ше­сти­уголь­ник об­ла­да­ет сле­ду­ю­щи­ми свой­ства­ми.

– Сто­ро­на пра­виль­но­го ше­сти­уголь­ни­ка равна ра­ди­у­су опи­сан­ной во­круг него окруж­но­сти.

– Боль­шая диа­го­наль пра­виль­но­го ше­сти­уголь­ни­ка яв­ля­ет­ся диа­мет­ром опи­сан­ной во­круг него окруж­но­сти и равна двум его сто­ро­нам.

– Мень­шая диа­го­наль пра­виль­но­го ше­сти­уголь­ни­ка в раз боль­ше его сто­ро­ны.

– Угол между сто­ро­на­ми пра­виль­но­го ше­сти­уголь­ни­ка равен 120°.

– Мень­шая диа­го­наль пра­виль­но­го ше­сти­уголь­ни­ка пер­пен­ди­ку­ляр­на его сто­ро­не.

– Тре­уголь­ник, об­ра­зо­ван­ный сто­ро­ной ше­сти­уголь­ни­ка, его боль­шей и мень­шей диа­го­на­ля­ми, пря­мо­уголь­ный, а его ост­рые углы равны 30° и 60°.

Правильный шестиугольник

Правильный шестиугольник — выпуклый шестиугольник, у которого все углы равны и все стороны равны.

(blacktriangleright) Каждый угол правильного шестиугольника равен (120^circ) .

(blacktriangleright) Около правильного шестиугольника можно описать окружность: ее радиус равен его стороне.

(blacktriangleright) Большие диагонали правильного шестиугольника делят его на (6) равносторонних треугольников, у которых высота равна радиусу вписанной в правильный шестиугольник окружности.

(blacktriangleright) Центры вписанной и описанной около правильного шестиугольника окружностей есть точка пересечения больших диагоналей этого шестиугольника.

(blacktriangleright) Площадь правильного шестиугольника со стороной (a) равна [S=dfrac<3sqrt3>2a^2]

К окружности, описанной около правильного шестиугольника (ABCDEF) , в точке (A) проведена касательная. Найдите угол между этой касательной и прямой (AD) . Ответ дайте в градусах.

Т.к. центр описанной около правильного шестиугольника окружности есть точка пересечения больших диагоналей, то он лежит на отрезке (AD) , то есть (AD) – диаметр описанной окружности. Т.к. радиус, проведенный в точку касания, перпендикулярен касательной, то угол между касательной и (AD) равен (90^circ) .

Радиус вписанной в правильный шестиугольник окружности равен (sqrt<12>) . Найдите радиус описанной около этого шестиугольника окружности.

По свойству правильного шестиугольника радиус (r) вписанной окружности равен перпендикуляру, проведенному из центра правильного шестиугольника (центр вписанной и описанной окружности) к стороне шестиугольника; причем этот перпендикуляр падает в середину стороны.

Читать еще:  Расчет трубы на изгиб онлайн калькулятор

Также по свойству правильного шестиугольника радиус описанной окружности равен его стороне (a) . Тогда из прямоугольного треугольника:

[a^2=left(frac a2right)^2+r^2 quad Rightarrow quad a=dfrac 2,r quadRightarrow quad a=dfrac2cdot sqrt<12>=4]

Таким образом, и радиус описанной окружности равен (4) .

Периметр правильного шестиугольника равен (72) . Найдите диаметр описанной окружности.

Если провести все большие диагонали правильного шестиугольника, то они пересекутся в одной точке, которая и будет центром описанной около него окружности (свойство правильного шестиугольника). Рассмотрим чертеж:

Так как угол правильного шестиугольника равен (180^circ(6-2):6=120^circ) , а большие диагонали являются биссектрисами углов, то, например, (angle BAO=angle ABO=60^circ) , следовательно, (triangle ABO) – равносторонний. То есть радиус окружности равен (AO) и равен (AB) . Так как периметр шестиугольника равен (72) , то его сторона равна (72:6=12) . Тогда диаметр описанной окружности равен (2cdot 12=24) .

Найдите радиус окружности, вписанной в правильный шестиугольник со стороной (sqrt3) .

Для любого многоугольника, в который можно вписать окружность, верно (S=pcdot r) , где (p) – полупериметр, а (r) – радиус вписанной окружности.
Площадь правильного шестиугольника со стороной (a) равна (S=dfrac<3sqrt3>2a^2) , полупериметр равен (3a) , тогда [dfrac<3sqrt3>2cdot (sqrt3)^2=3sqrt3cdot rquadRightarrowquad r=1,5]

Найдите сторону правильного шестиугольника, описанного около окружности, радиус которой равен (sqrt3) .

Для любого многоугольника, в который можно вписать окружность, верно (S=pcdot r) , где (p) – полупериметр, а (r) – радиус вписанной окружности.
Площадь правильного шестиугольника со стороной (a) равна (S=dfrac<3sqrt3>2a^2) , полупериметр равен (3a) , тогда [dfrac<3sqrt3>2a^2=3acdot sqrt3quadRightarrowquad a=2]

Площадь правильного шестиугольника равна (24sqrt3) . Найдите длину его большей диагонали.

По свойству правильного шестиугольника большая его диагональ в два раза больше его стороны. Следовательно, если (AB=a) , то (AD=BF=CE=2a) .

Т.к. эти диагонали делят правильный шестиугольник на 6 равносторонних треугольников, причем площадь каждого равна (frac4 a^2) , то площадь всего шестиугольника равна

[S=6cdot dfrac4a^2=24sqrt3 quad Rightarrow quad a=4 quad Rightarrow quad AD=2a=8.]

Около правильного шестиугольника (ABCDEF) описана окружность с центром в точке (O) . Расстояние от точки (O) до одной из его сторон равно (4sqrt<3>) . Найдите радиус этой окружности.

Радиус описанной около правильного шестиугольника окружности равен стороне этого шестиугольника.

(OK) – высота в треугольнике (AOF) , опущенная из (O) . Так как расстояние от точки до прямой – это длина перпендикуляра, опущенного из этой точки на эту прямую, то (OK = 4sqrt<3>) .
Пусть (R) – радиус описанной окружности, тогда (OF = R) , (KF = 0,5R) (так как (OK) ещё и медиана), таким образом, по теореме Пифагора (R^2 = (0,5R)^2 + (4sqrt<3>)^2) , откуда (R = 8) .

Теме «Правильный шестиугольник и его свойства» в ЕГЭ по математике традиционно отводится сразу несколько заданий. Причем в зависимости от условия от учащегося может требоваться как развернутый, так и краткий ответ. Именно поэтому в процессе подготовки к сдаче аттестационного испытания выпускникам непременно стоит научиться решать задачи на применение свойств этой фигуры, в которых необходимо найти ее стороны, диагонали, радиус окружности со вписанным правильным шестиугольником и т. д.

Восполнить пробелы в знаниях, «прокачать» навыки и улучшить собственные знания по данной теме вам поможет образовательный проект «Школково». Наши специалисты подготовили и изложили весь базовый материал для подготовки к ЕГЭ в максимально доступной форме.

Чтобы школьники могли успешно справляться с задачами по данной теме, мы рекомендуем повторить базовые понятия: каковы свойства правильного шестиугольника, описанного около окружности, как вычисляется его площадь, чему равны его углы и т. д. Весь необходимый материал вы найдете в разделе «Теоретическая справка». Он был разработан нашими сотрудники на основе богатого пpaктического опыта.

Для закрепления полученных знаний предлагаем потренироваться в решении соответствующих задач, а также заданий по теме «Параллелограмм в ЕГЭ». Найти их вы сможете в разделе «Каталог». Для каждого упражнения на сайте представлены алгоритм решения и правильный ответ.

Готовиться к ЕГЭ школьники из Москвы и других городов могут в режиме онлайн. В случае необходимости любое упражнение можно сохранить в разделе «Избранное». В дальнейшем к этому заданию можно будет вернуться и, к примеру, обсудить алгоритм его решения с преподавателем.

Правильный шестиугольник и его свойства

Тему многоугольников проходят в школьной программе, но не уделяют ей достаточного внимания. А между тем она интересна, и особенно это касается правильного шестиугольника или гексагона — ведь эту форму имеют многие природные объекты. К ним относятся пчелиные соты и многое другое. Эта форма очень хорошо применяется на пpaктике.

Определение и построение

Правильным шестиугольником называется плоскостная фигура, имеющая шесть равных по длине сторон и столько же равных углов.

Если вспомнить формулу суммы углов многоугольника

то получается, что в этой фигуре она равна 720°. Ну а поскольку все углы фигуры равны, нетрудно посчитать, что каждый из них равен 120°.

Начертить шестиугольник очень просто, для этого достаточно циркуля и линейки.

Пошаговая инструкция будет выглядеть так:

  1. чертится прямая линия и на ней ставится точка;
  2. из этой точки строится окружность (она является ее центром);
  3. из мест пересечения окружности с линией строятся еще две таких же, они должны сойтись в центре.
  4. после этого отрезками последовательно соединяются все точки на первой окружности.

При желании можно обойтись и без линии, начертив пять равных по радиусу окружностей.

Полученная таким образом фигура будет правильным шестиугольником, и это можно доказать ниже.

Свойства простые и интересные

Чтобы понять свойства правильного шестиугольника, его имеет смысл разбить на шесть треугольников:

Это поможет в дальнейшем нагляднее отобразить его свойства, главные из которых:

  1. диаметр описанной окружности;
  2. диаметр вписанной окружности;
  3. площадь;
  4. периметр.

Описанная окружность и возможность построения

Вокруг гексагона можно описать окружность, и притом только одну. Поскольку фигура эта правильная, то можно поступить довольно просто: от двух соседних углов провести внутрь биссектрисы. Они пересекутся в точке О, и образуют вместе со стороной между ними треугольник.

Углы между стороной гексагона и биссектрисами будут по 60°, поэтому можно определенно сказать, что треугольник, к примеру, АОВ — равнобедренный. А поскольку третий угол тоже будет равен 60°, то он еще и равносторонний. Отсюда следует, что отрезки ОА и ОВ равны, значит, могут служить радиусом окружности.

После этого можно перейти к следующей стороне, и из угла при точке С тоже вывести биссектрису. Получится очередной равносторонний треугольник, причем сторона АВ будет общей сразу для двух, а ОС — очередным радиусом, через который идет та же окружность. Всего таких треугольников получится шесть, и у них будет общая вершина в точке О. Получается, что описать окружность будет можно, и она всего одна, а ее радиус равен стороне гексагона:

R=а.

Именно поэтому и возможно построение этой фигуры с помощью циркуля и линейки.

Ну а площадь этой окружности будет стандартная:

S=πR²

Вписанная окружность

Центр описанной окружности совпадет с центром вписанной. Чтобы в этом убедиться, можно провести из точки О перпендикуляры к сторонам шестиугольника. Они будут являться высотами тех треугольников, из которых составлен гексагон. А в равнобедренном треугольнике высота является медианой по отношению к стороне, на которую она опирается. Таким образом, эта высота не что иное, как серединный перпендикуляр, являющийся радиусом вписанной окружности.

Высота равностороннего треугольника вычисляется просто:

h²=а²-(а/2)²= а²3/4, h=а(√3)/2

А поскольку R=a и r=h, то получается, что

r=R(√3)/2.

Таким образом, вписанная окружность проходит через центры сторон правильного шестиугольника.

Ее площадь будет составлять:

S=3πa²/4,

то есть три четверти от описанной.

Периметр и площадь

С периметром все ясно, это сумма длин сторон:

P=6а, или P=6R

Читать еще:  Маркировка полотен для лобзика

А вот площадь будет равна сумме всех шести треугольников, на которые можно разбить гексагон. Поскольку площадь треугольника вычисляется как половина произведения основания на высоту, то:

S=6(а/2)(а(√3)/2)= 6а²(√3)/4=3а²(√3)/2 или

S=3R²(√3)/2

Желающим вычислять эту площадь через радиус вписанной окружности можно сделать и так:

Занимательные построения

В гексагон можно вписать треугольник, стороны которого будут соединять вершины через одну:

Всего их получится два, и их наложение друг на друга даст звезду Давида. Каждый из этих треугольников — равносторонний. В этом нетрудно убедиться. Если посмотреть на сторону АС, то она принадлежит сразу двум треугольникам — ВАС и АЕС. Если в первом из них АВ=ВС, а угол между ними 120°, то каждый из оставшихся будет 30°. Отсюда можно сделать закономерные выводы:

  1. Высота АВС из вершины В будет равна половине стороны шестиугольника, поскольку sin30°=1/2. Желающим убедиться в этом можно посоветовать пересчитать по теореме Пифагора, она здесь подходит как нельзя лучше.
  2. Сторона АС будет равна двум радиусам вписанной окружности, что опять-таки вычисляется по той же теореме. То есть АС=2(a(√3)/2)=а(√3).
  3. Треугольники АВС, СДЕ и АЕF равны по двум сторонам и углу между ними, и отсюда вытекает равенство сторон АС, СЕ и ЕА.

Пересекаясь друг с другом, треугольники образуют новый гексагон, и он тоже правильный. Доказывается это просто:

  1. Угол АВF равен углу ВАС. Таким образом, получившийся треугольник с основанием АВ и безымянной вершиной напротив него — равнобедренный.
  2. Все такие же треугольники, основанием которых служит сторона гексагона, равны по стороне и прилегающей к ней углам.
  3. Треугольники при вершинах гексагона являются равносторонними и равными, что вытекает из предыдущего пункта.
  4. Углы новообразованного шестиугольника равняются 360-120-60-60=120°.

Таким образом, фигура отвечает признакам правильного шестиугольника — у нее шесть равных сторон и углов. Из равенства треугольников при вершинах легко вывести длину стороны нового гексагона:

d=а(√3)/3

Она же будет радиусом описанной вокруг него окружности. Радиус вписанной будет вдвое меньше стороны большого шестиугольника, что было доказано при рассмотрении треугольника АВС. Его высота составляет как раз половину стороны, следовательно, вторая половина — это радиус вписанной в маленький гексагон окружности:

r₂=а/2

Площадь нового шестиугольника можно посчитать так:

Получается, что площадь гексагона внутри звезды Давида в три раза меньше, чем у большого, в который вписана звезда.

От теории к пpaктике

Свойства шестиугольника очень активно используются как в природе, так и в различных областях деятельности человека. В первую очередь это касается болтов и гаек — шляпки первых и вторые представляют собой ничто иное, как правильный шестигранник, если не брать в расчет фаски. Размер гаечных ключей соответствует диаметру вписанной окружности — то есть расстоянию между противоположными гранями.

Нашла свое применение и гексагональная плитка. Она распространена куда меньше четырехугольной, но класть ее удобнее: в одной точке смыкаются три плитки, а не четыре. Композиции могут получаться очень интересные:

Выпускается и бетонная плитка для мощения.

Распространенность гексагона в природе объясняется просто. Таким образом, проще всего плотно уместить круги и шары на плоскости, если у них одинаковый диаметр. Из-за этого у пчелиных сот такая форма.

Шестиугольная призма и ее основные хаpaктеристики

Изучением призм занимается прострaнcтвенная геометрия. Важными их хаpaктеристиками являются заключенный в них объем, площадь поверхности и число составляющих элементов. В статье рассмотрим все эти свойства для шестиугольной призмы.

О какой призме пойдет речь?

Призма шестиугольная — это фигура, образованная двумя многоугольниками, имеющими шесть сторон и шесть углов, и шестью параллелограммами, соединяющими отмеченные шестиугольники в единое геометрическое образование.

На рисунке изображен пример этой призмы.

Отмеченный красным цветом шестиугольник называется основанием фигуры. Очевидно, что число ее оснований равно двум, причем оба они идентичны. Желто-зеленоватые грани призмы называются ее боковыми сторонами. На рисунке они представлены квадратами, но в общем случае они являются параллелограммами.

Шестиугольная призма может быть наклонной и прямой. В первом случае углы между основанием и боковыми сторонами не являются прямыми, во втором они равны 90 o . Также эта призма может быть правильной и неправильной. Правильная шестиугольная призма обязательно должна быть прямой и иметь правильный шестиугольник в основании. Приведенная выше призма на рисунке этим требованиям удовлетворяет, поэтому она называется правильной. Далее в статье будем изучать только ее свойства, как общий случай.

Элементы

Для любой призмы главными ее элементами являются ребра, грани и вершины. Шестиугольная призма не является исключением. Приведенный выше рисунок позволяет посчитать количество этих элементов. Так, граней или сторон мы получаем 8 (два основания и шесть боковых параллелограммов), число вершин составляет 12 (по 6 вершин для каждого основания), количество ребер шестиугольной призмы равно 18 (шесть боковых и 12 для оснований).

В 1750-е годы Леонард Эйлер (швейцарский математик) установил для всех полиэдров, к которым относится призма, математическую связь между числами указанных элементов. Эта связь имеет вид:

число ребер = число граней + число вершин — 2.

Указанные выше цифры удовлетворяют этой формуле.

Диагонали призмы

Все диагонали шестиугольной призмы можно разделить на два типа:

  • те, которые лежат в плоскостях ее граней;
  • те, которые принадлежат всему объему фигуры.

Рисунок ниже показывает все эти диагонали.

Видно, что D1 — это диагональ боковой стороны, D2 и D3 — диагонали всей призмы, D4 и D5 — диагонали основания.

Длины диагоналей боковых сторон между собой равны. Вычислить их легко, используя всем известную теорему Пифагора. Обозначим символом a длину стороны шестиугольника, символом b — длину бокового ребра. Тогда диагональ имеет длину:

Диагональ D4 также легко определяется. Если вспомнить, что правильный шестиугольник вписывается в окружность радиусом a, то D4 является диаметром этой окружности, то есть получим следующую формулу:

Диагональ D5 основания найти несколько сложнее. Для этого следует рассмотреть равносторонний треугольник ABC (см. рис.). Для него AB = BC = a, угол ABC равен 120 o . Если из этого угла опустить высоту (она же будет биссектрисой и медианой), тогда половина основания AC будет равно:

AC/2 = AB*sin(60 o ) = a*√3/2.

Сторона AC является диагональю D5, поэтому получаем:

Теперь остается найти диагонали D2 и D3 правильной шестиугольной призмы. Для этого нужно увидеть, что они являются гипотенузами соответствующих прямоугольных треугольников. Воспользовавшись теоремой Пифагора, получаем:

Таким образом, самой большой диагональю для любых значений a и b является D2.

Площадь поверхности

Чтобы понять, о чем идет речь, проще всего рассмотреть развертку этой призмы. Она показана на рисунке.

Видно, что для определения площади всех сторон рассматриваемой фигуры необходимо рассчитать отдельно площадь четырехугольника и площадь шестиугольника, затем умножить их на соответствующие целые числа, равные количеству каждого n-угольника в призме, и сложить полученные результаты. Шестиугольников 2, прямоугольников 6.

Для площади прямоугольника получаем:

Тогда площадь боковой поверхности равна:

Для определения площади шестиугольника проще всего воспользоваться соответствующей формулой, которая имеет вид:

Подставляя в это выражение число n равное 6, получаем площадь одного шестиугольника:

S6 = 6/4*a 2 *ctg(pi/6) = 3*√3/2*a 2 .

Это выражение следует умножить на два, чтобы получить площадь оснований призмы:

Остается сложить Sos и S2, чтобы получить полную площадь поверхности фигуры:

Объем призмы

После того как была получена формула для площади шестиугольного основания, вычислить объем, заключенный в рассматриваемую призму, проще простого. Для этого следует лишь умножить площадь одного основания (шестиугольника) на высоту фигуры, длина которой равна длине бокового ребра. Получаем формулу:

Отметим, что произведение основания на высоту дает значение объема абсолютно любой призмы, включая наклонную. Однако в последнем случае расчет высоты осложняется, поскольку она уже не будет равна длине бокового ребра. Что касается шестиугольной правильной призмы, то значение ее объема является функцией двух переменных: сторон a и b.


Плавный пуск с тремя проводами как подключить

Плавный пуск с тремя проводами как подключить Плавный пуск с тремя проводами как подключить Как сделать плавный пуск электроинструмента с обычной розетки. Обычная розетка, если ее немного доработать,...

10 09 2024 17:12:37

Как работает кривошипно шатунный механизм

Как работает кривошипно шатунный механизм Как работает кривошипно шатунный механизм Как работает и устроен кривошипно-шатунный механизм двигателя Двигатели внутреннего сгорания, используемые на...

09 09 2024 23:20:30

Лучшие музыкальные приложения: 12 приложений, чтобы писать музыку, где угодно

Лучшие музыкальные приложения: 12 приложений, чтобы писать музыку, где угодно  Мобильные секвенсоры, DAW, синтезаторы, драм-машины и другие лучшие музыкальные приложения для iOS и Android, чтобы писать музыку в любом месте мира....

08 09 2024 5:20:36

Отвертка под биты выбор

Отвертка под биты выбор Отвертка под биты выбор Лучшие биты для шуруповерта на основании тестов Биты для шуруповертов обеспечивают прочное удержание крепежа и вкручивание его в...

07 09 2024 3:44:29

Буржуйка из двух газовых баллонов чертеж

Буржуйка из двух газовых баллонов чертеж Буржуйка из двух газовых баллонов чертеж Буржуйка из газового баллона своими руками: вертикальная и горизонтальная Печи-буржуйки, выполненные из подручных...

06 09 2024 15:36:47

Инжекция и эжекция в чем разница

Инжекция и эжекция в чем разница Инжекция и эжекция в чем разница Инжектор и эжектор – в чем разница Чем отличается эжектор от инжектора? Инжектор — это стандартный линейный ускоритель,...

05 09 2024 21:30:35

Как соединить светодиодную лампу с проводом

Как соединить светодиодную лампу с проводом Как соединить светодиодную лампу с проводом Как подключить светодиодный светильник к 220 В: схема и правила Осветительные лед-элементы прочно вошли в быт...

04 09 2024 11:24:53

Гост на ключи гаечные рожковые

Гост на ключи гаечные рожковые Гост на ключи гаечные рожковые ГОСТ 2839-80 Ключи гаечные с открытым зевом двусторонние. Конструкция и размеры Купить ГОСТ 2839-80 — бумажный документ с...

03 09 2024 19:11:47

Чугун виды и использование

Чугун виды и использование Чугун виды и использование Чугун. Свойства чугуна. Применение чугуна Родом из Азии. В слове «чугун» лингвисты усматривают тюркские корни. Так, к примеру,...

02 09 2024 8:38:58

Состав бетона для фундамента пропорции в ведрах

Состав бетона для фундамента пропорции в ведрах Состав бетона для фундамента пропорции в ведрах Готовим бетон: пропорции в ведрах Готовый бетонный раствор имеет пластичный состав, включающий четыре...

01 09 2024 19:40:51

Электрик цвет фото как выглядит

Электрик цвет фото как выглядит Электрик цвет фото как выглядит Цвет электрик Синий цвет долгое время считался слишком консервативным, чтобы применяться в неофициальных нарядах. Но,...

31 08 2024 14:26:16

Spotify в России всё ближе: реклама сервиса замечена в «Винзаводе»

Spotify в России всё ближе: реклама сервиса замечена в «Винзаводе»  В Сети появились снимки рекламных постеров стриминговой платформы Spotify, готовящейся к запуску в России. Ожидаем старта до конца 2019 года?...

30 08 2024 0:55:16

Neural DSP Archetype Nolly — эмулятор гитарных эффектов, созданный на основе кастомных усилителей Адама «Nolly» Гетгуда

Neural DSP Archetype Nolly — эмулятор гитарных эффектов, созданный на основе кастомных усилителей Адама «Nolly» Гетгуда  Гитарный эмулятор Neural DSP Archetype Nolly создан для любителей тяжелой музыки совместно с экс-гитаристом Periphery Адамом "Nolly" Гетгудом....

29 08 2024 7:15:33

VCV Rack v1.0.0 — первая стабильная версия бесплатного модульного синтезатора с открытым исходным кодом

VCV Rack v1.0.0 — первая стабильная версия бесплатного модульного синтезатора с открытым исходным кодом  После нескольких лет разработки вышла первая версия синтезатора VCV Rack v1.0.0. Бесплатный модульный синтезатор наконец-то добрался до стабильного релиза....

28 08 2024 16:38:35

Что лучше канифоль или паяльная кислота

Что лучше канифоль или паяльная кислота Что лучше канифоль или паяльная кислота Когда и, что лучше паять с канифолью, а когда с кислотой или бурой? При пайке, в отличие от сварки, соединяемые...

27 08 2024 3:45:31

Сколько заряжаются аккумуляторные батарейки 2700

Сколько заряжаются аккумуляторные батарейки 2700 Сколько заряжаются аккумуляторные батарейки 2700 Вся правда и ложь об аккумуляторах 2700 мАч Тема аккумуляторов — одна из самых закрытых. В магазине...

26 08 2024 16:30:31

Как правильно выпаять деталь из платы

Как правильно выпаять деталь из платы Как правильно выпаять деталь из платы Как выпаять микросхему из платы паяльником? Автор: Владимир Васильев · Опубликовано 15 мая 2017 · Обновлено 25...

25 08 2024 11:38:30

Сколько заряжается батарейка аккумулятор

Сколько заряжается батарейка аккумулятор Сколько заряжается батарейка аккумулятор Сколько времени заряжать аккумуляторные батарейки Невозможно правильно зарядить аккумуляторные источники тока, не...

24 08 2024 1:36:49

Мельхиор что за металл стоимость

Мельхиор что за металл стоимость Мельхиор что за металл стоимость Лом мельхиора — виды. Применение мельхиора Основная масса жителей России знает о мельхиоре только то, что это столовое...

23 08 2024 12:47:47

Запись первой педали фузза Maestro Fuzz-Tone появилась на YouTube

Запись первой педали фузза Maestro Fuzz-Tone появилась на YouTube  Основатель JHS Pedals Джош Скотт послушал рекламный винил первой массовой педали фузза/дисторшна Maestro Fuzz-Tone FZ-1, выпущенной в 1962 году....

22 08 2024 12:30:14

Обозначение выпрямителя на схеме

Обозначение выпрямителя на схеме Обозначение выпрямителя на схеме Выпрямитель, схема диодного моста Почти вся электронная аппаратура для своей работы требует определённую величину...

21 08 2024 12:37:16

Мультиметр цифровой как проверить аккумулятор

Мультиметр цифровой как проверить аккумулятор Мультиметр цифровой как проверить аккумулятор Как проверить автомобиль мультиметром В этот раз расскажем, как и зачем перед покупкой нужно проверить авто...

20 08 2024 22:23:38

Гост на сталь с235 статус

Гост на сталь с235 статус Гост на сталь с235 статус ГОСТ 27772-2015 Прокат для строительных стальных конструкций. Общие технические условия Область применения Настоящий стандарт...

19 08 2024 1:18:10

Что обозначает белый провод

Что обозначает белый провод Что обозначает белый провод Какими бывают цвета проводов фазы, ноля и земли в квартирах или частных домах Играют ключевую роль для обслуживания и ремонта....

18 08 2024 13:36:26

В No Man’s Sky появился секвенсор ByteBeat — можно писать музыку прямо на PlayStation 4 или Xbox One

В No Man’s Sky появился секвенсор ByteBeat — можно писать музыку прямо на PlayStation 4 или Xbox One  Обновление No Man's Sky 2.24 добавило в видеоигру секвенсор и синтезатор ByteBeat, чьи возможности не уступают секвенсорам в DAW....

17 08 2024 15:16:25

Устройство индукционной печи и принцип ее работы

Устройство индукционной печи и принцип ее работы Устройство индукционной печи и принцип ее работы Что такое индукционная печь и как ее сделать своими руками? Индукционная печь — это печной аппарат,...

16 08 2024 12:15:13

Видео подключения светодиодной ленты к блоку питания

Видео подключения светодиодной ленты к блоку питания Видео подключения светодиодной ленты к блоку питания Монтаж и подключение светодиодной ленты через блок питания 12-24 Вольт. Есть две основные причины...

15 08 2024 14:11:36

Как подключить трехфазный двигатель через конденсаторы

Как подключить трехфазный двигатель через конденсаторы Как подключить трехфазный двигатель через конденсаторы Двигатель на 380 подключить на 220 В через конденсаторы и без конденсаторов. В статье вы узнаете о...

14 08 2024 11:59:13

Яндекс покажет фестиваль «Нашествие» в прямом эфире

Яндекс покажет фестиваль «Нашествие» в прямом эфире  Смотреть "Нашествие" 2019 можно будет на главной странице Яндекс в высоком качестве и с возможностью подписки на выступления....

13 08 2024 23:15:37

Выбор кондиционера по площади

Выбор кондиционера по площади Выбор кондиционера по площади Выбор мощности кондиционера по площади помещения Основной параметр, на который ориентируются покупатели при выборе...

12 08 2024 7:31:37

NAMM 2020: Kramer возвращает моду на хэйр-метал с новой серией электрогитар «Made To Rock Hard»

NAMM 2020: Kramer возвращает моду на хэйр-метал с новой серией электрогитар «Made To Rock Hard»  Гитары Kramer 2020 года должны вернуть бренд на большой гитарный рынок. Компания также решила вернуть моду на стилистику глэм- и хэйр-металистов....

11 08 2024 8:48:17

Как паять светодиодную ленту между собой

Как паять светодиодную ленту между собой Как паять светодиодную ленту между собой Как правильно паять светодиодную ленту? Светодиодная лента широко применяется в освещении как внутри помещений,...

10 08 2024 9:33:31

Как заварить нержавейку обычным электродом

Как заварить нержавейку обычным электродом Как заварить нержавейку обычным электродом Сварка нержавейки для начинающих: электроды для сварки, технология работы инвертором и полуавтоматом В данной...

09 08 2024 15:37:19

Оборудование Kraftwerk: 7 устройств, доказывающих технологическую инновационность немецких электронщиков

Оборудование Kraftwerk: 7 устройств, доказывающих технологическую инновационность немецких электронщиков  MIDI-перчатка, оркестровый синтезатор, металлические пэды и другое оборудование Kraftwerk, сформировавшее звучание и яркий образ знаменитых электронщиков....

08 08 2024 0:46:35

Снегоуборщик Ariens ST 30 DLE Deluxe арт. 921307: обзор, отзывы

Снегоуборщик Ariens ST 30 DLE Deluxe арт. 921307: обзор, отзывы Снегоуборщик бензиновый ARIENS ST30 DLE Deluxe 921315 Описание: Снегоуборщик бензиновый ARIENS ST30 DLE Deluxe 921315 Последнее поколение снегометателей...

07 08 2024 0:31:20

Редуктор цилиндрический с вертикальными валами

Редуктор цилиндрический с вертикальными валами Редуктор цилиндрический с вертикальными валами Горизонтальные и вертикальные редукторы Современная промышленность использует множество разновидностей...

06 08 2024 17:52:37

NAMM 2019: представлен IK Multimedia AXE I/O — аудиоинтерфейс для гитаристов с настраиваемым импедансом

NAMM 2019: представлен IK Multimedia AXE I/O — аудиоинтерфейс для гитаристов с настраиваемым импедансом  IK Multimedia AXE I/O предложит 2 входа, 5 выходов, встроенный хроматический тюнер, несколько схем прохождения сигнала и много других крутых возможностей....

05 08 2024 13:35:35

Какую свч печь выбрать для дома

Какую свч печь выбрать для дома Какую свч печь выбрать для дома Как выбрать микроволновку Производители микроволновых печей предоставляют покупателю широкий выбор, но критерии выбора у...

04 08 2024 14:27:40

Расчет площади круглого сечения

Расчет площади круглого сечения Расчет площади круглого сечения Как рассчитать параметры труб При строительстве и обустройстве дома трубы не всегда используются для трaнcпортировки...

03 08 2024 13:34:39

NAMM 2020: Roland создаёт экосистему собственных инструментов вокруг движка ZEN-Core и это очень крутая новость

NAMM 2020: Roland создаёт экосистему собственных инструментов вокруг движка ZEN-Core и это очень крутая новость  Технология ZEN-Core Synthesis System позволит инструментам Roland обмениваться информацией. Покупаешь один инструмент с ZEN-Core — получаешь все....

02 08 2024 14:12:45

NAMM 2019: новая серия аудиоинтерфейсов Tascam Series USB оснащена встроенным DSP-процессором эффектов и десятками каналов

NAMM 2019: новая серия аудиоинтерфейсов Tascam Series USB оснащена встроенным DSP-процессором эффектов и десятками каналов  Звуковые карты Tascam Series 102i и Tascam Series 208i предлагают множество входов и выходов, полное отсутствие задержек и отдельный DSP-модуль....

01 08 2024 19:18:11

Виды передаточных механизмов электроприводов

Виды передаточных механизмов электроприводов Виды передаточных механизмов электроприводов Типы передач, виды передаточных механизмов и их характеристики Классификация элементов А П П А Р А Т О В И У С Т Р О Й С Т В...

31 07 2024 10:24:33

Как правильно паять алюминий

Как правильно паять алюминий Как правильно паять алюминий Как паять алюминий в домашних условиях паяльником Алюминий отличается высокой прочностью, является хорошим проводником тепла...

30 07 2024 13:30:19

Positive Grid анонсировала BIAS FX 2

Positive Grid анонсировала BIAS FX 2  Компания Positive Grid показала новую версию популярного гитарного эмулятора BIAS FX 2. Стаффа, возможностей и новых функций в нем очень много!...

29 07 2024 19:34:22

Как обозначить сечение на чертеже

Как обозначить сечение на чертеже Как обозначить сечение на чертеже Сечения. Определение. Виды сечений. Изображение сечений на чертежах Сечение — изображение фигуры, получающейся при...

28 07 2024 13:38:10

Снегоуборщик Stiga Royal 1381 HST: обзор, отзывы

Снегоуборщик Stiga Royal 1381 HST: обзор, отзывы Снегоуборщик Stiga Royal 1381 HST: обзор, отзывы Обзор снегоочистителя «Stiga 1381 HST» Обзор снегоочистителя «Stiga 1381 HST» С наступлением зимы высоким...

27 07 2024 0:47:23

NAMM 2020: Mackie выпускает доступную серию студийных мониторов CR-X

NAMM 2020: Mackie выпускает доступную серию студийных мониторов CR-X  Mackie CR-X — новая серия доступных студийных мониторов и сабвуферов с проводным и беспроводным подключением. Спор о качестве звука объявляем открытым....

26 07 2024 5:44:42

Электросхема сварочного аппарата минимаг 161

Электросхема сварочного аппарата минимаг 161 Электросхема сварочного аппарата минимаг 161 Принципиальная схема сварочного инвертора Современные сварочные работы проводятся при применении специальных...

25 07 2024 7:43:55

Подключение горелки к газовому баллону

Подключение горелки к газовому баллону Подключение горелки к газовому баллону Газовая горелка. Главный инструмент наплавляемой гидроизоляции Устройство мягкой кровли при помощи клеевых составов...

24 07 2024 17:28:30

Как проверить заряд аккумулятора с помощью мультиметра

Как проверить заряд аккумулятора с помощью мультиметра Как проверить заряд аккумулятора с помощью мультиметра Как проверить заряд аккумулятора автомобиля Аккумулятор выполняет важную роль в автомобиле. При...

23 07 2024 14:21:49

Еще:
Музыка -1 :: Музыка -2 :: Музыка -3 :: Музыка -4 :: Музыка -5 :: Музыка -6 :: Музыка -7 :: Музыка -8 :: Музыка -9 :: Музыка -10 :: Музыка -11 ::