Аустенит что это такое > Как создать музыку?
Музыка: как это делается    

Аустенит что это такое

Аустенит что это такое

0a9e6d14

Аустенит

Одна из структурных составляющих железоуглеродистых сплавов, твёрдый раствор углерода (до 2%)и легирующих элементов в железе (см. Железо). А. получил название по имени английского учёного У. Робертса-Остена (W. Roberts-Austen, 1843—1902). Кристаллическая решётка — куб с центрированными гранями. А. немагнитен, плотность его больше, чем других структурных составляющих стали. В углеродистых сталях и чугунах А. устойчив выше 723°C. В процессе охлаждения стали А. превращается в другие структурные составляющие. В железоуглеродистых сплавах, содержащих никель, марганец, хром в значительных количествах, А. может полностью сохраниться после охлаждения до комнатной температуры (например, нержавеющие хромоникелевые стали). В зависимости от состава стали и условий охлаждения А. может сохраниться частично в углеродистых или легированных сталях (т. н. остаточный А.).

Учение о превращениях А. берёт начало с открытий Д. К. Чернова (1868), впервые указавшего на их связь с критическими точками стали. При охлаждении ниже этих точек образуются фазы с иным взаимным расположением атомов в кристаллической решётке и, в некоторых случаях, с измененным химическим составом. Различают три области превращений А. В верхнем районе температур (723—550°С) А. распадается с образованием Перлита эвтектоидной смеси, состоящей из перемежающихся пластин Феррита (массовая концентрация углерода 0,02%) и Цементита (концентрация углерода 6,7%). Перлитное превращение начинается после некоторой выдержки и при достаточном времени завершается полным распадом А. Ниже определенной температуры (Мн), зависящей от содержания углерода (для стали с 0,8% углерода около 240°C), происходит мартенситное превращение А. (см. Мартенсит). Оно состоит в закономерной перестройке кристаллической решётки, при которой атомы не обмениваются местами. В интервале температур 550°С — Мн происходит промежуточное (бейнитное) превращение А. Это превращение, как и перлитное, начинается после инкубационного периода и может быть подавлено быстрым охлаждением; оно, как и мартенситное, прекращается при постоянной температуре (некоторая часть А. сохраняется непревращённой) и сопровождается образованием хаpaктерного рельефа на поверхности шлифа. При промежуточном превращении упорядоченные перемещения металлических атомов сочетаются с диффузионным перераспределением атомов углерода в А. В результате образуется феррито-цементитная смесь, а часто и остаточный А. с измененным по сравнению со средним содержанием углерода. Цементит при промежуточном превращении может выделяться как из А. непосредственно, так и из пересыщенного углеродом феррита (см. Бейнит).

Превращение А. в сплавах с содержанием углерода св. 2%, в связи с наличием первичных образований цементита или графита, вызывает своеобразие получающихся структур (см. Чугун). Представление о кинетике превращений А. дают диаграммы, указывающие долю превратившегося А. в координатах температура — время. На диаграмме превращений легиров. А. четко разделены области перлитного (640—520°C) и промежуточного (480—300°C) превращений и имеется температурная зона высокой устойчивости А. (рис.). При перлитном превращении легированного А. во многих случаях образуется смесь феррита и специальных карбидов.

Легирующие элементы, за исключением кобальта, увеличивают продолжительность инкубационного периода перлитного превращения.

Закономерности превращений А. используют при разработке легированных сталей различного назначения процессов термической и термомехалической обработки. Диаграммы превращений А. позволяют устанавливать режимы отжига сталей, охлаждения изделий, изотермической закалки и т. д.

Лит.: Курдюмов Г. В., Явления закалки и отпуска стали, М., 1960; Энтин Р. И., Превращения аустенита в стали, М., 1960.

Диаграмма изотермического превращения аустенита стали, содержащей 0,4% углерода, 2% марганца и 0,1% ванадия.

Аустенит что это такое

Как известно, аустенит является твердым раствором углерода в  -железе и расположен на диаграмме состояния железо-углерод (рис.1,а) выше 727 0 С (температура перлитного превращения). Поэтому при комнатной температуре увидеть настоящий аустенит невозможно. Можно увидеть аустенит в высокотемпературном микроскопе при нагреве.

При комнатной температуре мы обычно можем увидеть аустенит в легированной стали. В этих сталях много легирующих элементов (кроме углерода), поэтому аустенит в них существует при комнатной температуре. Это, например, нержавеющая сталь (рис.1,б).

Рисунок 1. Фрагмент диаграммы состояния железо-углерод (а) и структура аустенита (б) (съемка через зеленый фильтр.).

Можно наблюдать остаточный аустенит после закалки, если в стали содержится больше 0,6% углерода. Как он формируется? Известно, что мартенситное превращение при закалке происходит с увеличением объема, т.е. мартенсит занимает больший объем, чем исходный аустенит. Поэтому, чем дальше идет мартенситное превращение, тем больше сжимается тот аустенит, который еще не превратился в мартенсит. Известно, что аустенит стабилизируется пластической деформацией, т.е. чем больше его сжать, тем хуже он будет превращаться в мартенсит. В какой-то момент превращение вообще остановится, а аустенит останется в стали в «зажатом» виде. Это будут отдельные включения, расположенные случайно. На рис.2 аустенит виден в виде белых включений на фоне мартенсита.

Рисунок 2. Остаточный аустенит в стали после закалки.

Можно ли создать в обычной стали структуру с большим количеством остаточного аустенита? Вероятно, если сжать определенный участок металла при закалке «целенаправленно», то можно создать большую зону с остаточным аустенитом. Такое возможно в процессе плазменной резки, когда поток плазмы расплавляет металл в зоне реза (рис.3).

Рисунок 3. Процесс плазменной резки. (http://novator-grp.ru/rus/projects/Hypertherm/ ; Дата доступа – 25.04.2014)

В процессе резки поверхность реза нагревается. Можно представить себе, как распределится температура в зависимости от расстояния до линии реза (рис.4). Поверхность реза нагревается до температуры, достаточной для поверхностной закалки. Это зона 1. Зона 2 нагреется, очевидно, до температуры выше, чем 727 0 С. Охлаждаться она будет не так быстро, как зона 1. В этой зоне закалки не произойдет, но структура изменится Зона 3 останется без существенных изменений, так как нагреется до температуры ниже 727 0 С.

Рисунок 4. Схема расположения структурных зон при плазменной резке.

Действительно, на поверхности шлифа (после травления реактивом 4% азотной кислоты в этиловом спирте) выявляется слой изменившейся структуры (рис.5).

Рисунок 5. Структура стали вблизи линии плазменного реза.

На поверхности имеется зона (1) толщиной порядка 50-100 мкм. Это зона закалки со структурой мартенсита. После нее следует зона с двухфазной структурой (2). Толщина зоны составляет порядка 250 мкм. В данной зоне однозначно присутствует феррит (α-Fe), который является матрицей материала (был до обработки плазмой). И есть еще светлые, достаточно крупные, участки структуры с четкими границами. Итак, что может быть белым в структуре стали при травлении традиционным реактивом? Аустенит, феррит, цементит. Как их разделить? Можно измерить твердость.
В зоне 1 твердость колeблется в пределах 3000-3500 ГПа. Такую твердость имеет троостит или мартенсит отпуска. Микротвердость во второй зоне составляет 2254 ГПа, что соответствует ферриту. Известно, что твердость аустенита в 2-2,5 раза выше, чем феррита, твердость цементита превышает твердость феррита приблизительно в 10 раз. Поэтому светлой фазой может быть только аустенит.
Рентгеноструктурный анализ это подтвердил. Обнаружено Feγ — остаточный аустенит.
Главное! Поскольку процесс изменения структуры начался с поверхности, где шла закалка, формирующийся мартенсит сдавил зону 2 и не дал аустениту превратиться до конца. Превращение «застряло» в области GPS диаграммы состояния железо-углерод на этапе превращения аустенита в феррит.
На рис. 6 показана зона 2 при большом увеличении. Светлая фаза – аустенит, более темная – феррит.

Аустенитные стали

Аустенит — это твердый однофазный раствор углерода до 2 % в y-Fe. Главная его особенность заключается в последовательности, в которой располагаются атомы, т. е. в строении кристаллической решетки. Она бывает 2 типов:

  1. ОЦК a-железо (объемно — центрированная – по одному атому располагается в 8-ми вершинах куба и 1 в центре).
  2. ГЦК y-железо (гране-центрированная по одному атому находится в 8-ми вершинах куба и по одному находятся на каждой из 8-ми граней, всего 16 атомов).

Простыми словами: аустенит — это структура или состояние металла, определяющая его технические хаpaктеристики, которые получить в другом состоянии невозможно, т.к. меняя строение, металл изменяет и свойства. Без аустенита невозможна такая технология как закалка, которая является самой распространенной, дешевой, технически доступной, а в некоторых случаях и единственной технологией упрочнения металла.

Свойства аустенитных сталей и где их используют

Само состояние железа в Y-фазе (аустенит) уникально, благодаря ему металл является жаропрочным (+850 ºC), холодостойким (-100 ºC и ниже t), способен обеспечивать коррозионную и электрохимическая стойкость и другие важнейшие свойства, без которых были бы немыслимы многие технологические процессы в:

  • нефтепереpaбатывающей и химической отраслях;
  • медицине;
  • космическом и авиастроении;
  • электротехнике.

Жаропрочность — свойство стали не менять своих технических свойств при критических температурах с течением времени. Разрушение происходит при неспособности металла противостоять дислокационной ползучести, т. е. смещению атомов на молекулярном уровне. Постепенно происходит разупрочнение, и процесс старения металла начинает происходить все быстрее. Это происходит с течением времени при низких или высоких температурах. Так вот, насколько этот процесс растянется во времени — это и есть способность металла к жаропрочности.

Читать еще:  Последовательное и параллельное соединение лампочек что лучше

Коррозионная стойкость — способность металла противостоять разрушению (дислокационной ползучести) не только с течением времени и при криогенных и высоких температурах, но еще и в агрессивных средах, т. е. при взаимодействии с веществами активно вступающих в реакцию с одним или несколькими компонентных элементов. Разделяют 2 типа коррозии:

  1. химическая — окисление металла в таких средах, как газовая, водная, воздушная;
  2. электрохимическая — растворение металла в кислотных средах, имеющих положительно или отрицательно заряженные ионы. При разности потенциалов между металлом и электролитом, происходит неизбежная поляризация, приводящая к частичному взаимодействию двух веществ.

Холодостойкость — способность сохранять структуру при криогенных температурах с течением длительного времени. Из-за искажения кристаллической решетки структура стали холодостойкой способна принимать строение присущее обычным малолегированным сталям, но уже при очень низких температурах. Но этим сталям присущ один недостаток — иметь полноценные свойства они могут только при минусовых температурных значениях, t — ≥ 0 для них недопустимы.

Методы получения аустенита

Аустенит — это структура металла, которая в малолегированных марках возникает в диапазоне температур 550-743 ºC. Как можно сохранить эту структуру и, соответственно, свойства за границами этих t? — Ответ: методом легирования. При наполнении решетки аустенита атомами других элементов, образуются структурные искажения, а процесс восстановления ОЦК–решетки (естественное строение при нормальных температурах) сдвигается на сотни градусов.

Как эти свойства проявляются и в каком состоянии, зависит от добавочных т. е. легирующих элементов и термической обработки детали, которую она может дополнительно получать. Причем влияют не только элементы, но их соотношение, так аустенитная сталь подразделяется на:

  • хромомарганцевую и хромникельмарганцевую (07Х21Г7AН5, 10X14AГ15, 10X14Г14H4T);
  • хромоникелевую (08Х18Н12Б, 03Х18Н11, 08X18H10T, 06X18Н11, 12X18H10T, 08X18H10;
  • высококремнистую (02Х8Н22С6, 15Х18Н12C4Т10);
  • хромоникельмолибденовую (03Х21Н21М4ГБ, 08Х17Н15М3Т, 08X17Н13M2T, 03X16H15M3, 10Х17Н13М3Т).

Химические элементы и их влияние на аустенит

Пособников у аустенита немного, использоваться они могут как совместно, так и частично, в зависимости от того какие свойства нужно получить:

  • Хром — при его содержании более 13 % на поверхности образует оксидную пленку, толщиной 2-3 атома, которая исключает коррозию. В аустените хром находится свободном состоянии, при условии минимального содержания углерода, так как тот сразу образует карбид Cr23C6, что приводит к сегрегации хрома и обедняет большие участки матрицы, делая ее доступной для окисления, сам карбид Cr23C6 способствует межкристаллитной коррозии аустенита.
  • Углерод (максимальное его значение не более 10 %). Углерод в аустените находится в соединенном состоянии, основная его задача — образование карбидов, которые обладают предельной прочностью.
  • Никель — основной элемент, который стабилизирует желаемую структуру. Достаточно содержание 9-12 %, чтобы перевести сталь в аустенитный класс. Измельчает и сдерживает рост зерна, что обеспечивает высокую пластичность;
  • Азот заменяет атомы углерода, присутствие которых в сталях электрохимически стойких снижено до 0,02 %;
  • Бор — уже в тысячных процентах увеличивает пластичность, в аустените, измельчая его зерно;
  • Кремний и марганец не указываются как основные легирующие элементы в маркировке, но они являются основными или обязательными легирующими элементами аустенита, которые придают прочность и стабилизируют структуру.
  • Титан и ниобий — при температуре выше 700 °С карбид хрома распадается и образуется стойкий TiC и NiC, который не вызывает межкристаллитную коррозию, но их использование не всегда оправданно холодостойких сталях, т.к. оно повышает границу распада аустенита.

Термическая обработка

Аустенит подвергают обработке только по необходимости. Основные операции это высокотемпературный отжиг (1100-1200 °С в течение 0,5-2,5 часа) при котором устраняется хрупкость. Далее закалка с охлаждением в масле или на воздухе.

Аустенитную сталь, легированную алюминием, подвергают двойной закалке и двойной нормализации:

Механическая окончательная обработка проводится до закалки, но после отжига.

Изделия из аустнитных сталей

Полуфабрикаты, в которых поставляется сталь, представляет собой:

  • Листы, толщиной 4-50 мм с гарантированным химическим составом и механическими свойствами.
  • Поковки. Ввиду сложной обработки этих сталей методом сварки, изготовление некоторых деталей представляет собой получение пpaктически готовых изделий уже на этапе литья. Это роторы, диски, турбины, трубы двигателей.

Методы соединения аустенита:

  • Припой – очень сильно ограничивает использование металла при t более 250 °С;
  • Сваривание – возможно в защитной атмосфере (газовой, флюсовой), при последующей термической обработке.
  • Механическое соединение – болты и другие крепежные элементы, изготовленные из аналогичного материала.

Аустенитные стали одни из самых дорогих технических сталей, использование которых ограничивается узкой специализацией оборудования.

Аустенитная сталь

Аустенитная сталь – одна из модификаций железа с высокой степенью легирования. Обладает гранецентрированной кристаллической решеткой. Она легко сохраняет свою структуру даже при очень низких температурах. Аустениты располагают высокими показателями прочности. Он устойчивы как высоким температурам и большим нагрузкам.

Свойства аустенитных сталей

Сталь аустенитного класса образует 1-фазную структуру во время процесса кристаллизации. Ее кристаллическая решетка не изменяется даже при резком охлаждении до отрицательных температур (–200 °C). Основными компонентами аустенитных железных сплавов являются хром и никель. От доли их содержания зависят технологичность, пластичность, прочность и жаростойкость материала. Для легирования применяют следующие материалы:

  1. Ферритизаторы: титан, кремний, молибден, ниобий. Они стабилизируют структуру аустенитов и формируют объемноцентрированную кубическую решетку.
  2. Аустенизаторы: азот, марганец и углерод. Они присутствуют в избыточных фазах, формирующихся во время термообработки железных сплавов.

По свойствам материалов аустенитные модификации железа делятся на следующие типы:

  1. Коррозионностойкие (нержавеющие). В их состав входит хром (18%), никель (30%) и углерод (0,25%). Эти высоколегированные стали применяются в промышленном производстве с 1910 г. Их главным преимуществом является устойчивость к коррозии. Материал сохраняет это свойство даже при сильном нагревании, что обусловлено низким содержанием углерода. Коррозионностойкие железные сплавы производятся, согласно ГОСТ 5632-2014. В них могут присутствовать добавки из кремния, марганца, и молибдена.
  2. Жаростойкие. Они обладают ГЦК-решеткой и устойчивы к воздействию высоких температур. Этот материал можно нагревать до 1100 °C. Жаропрочные аустенитные стали применяются при изготовлении печных устройств, турбин роторов электростанций и иных приборов, работающих при помощи дизельного топлива. При производстве данной модификации железа используются дополнительные добавки из бора, ниобия, ванадия, молибдена и вольфрам. Эти химические элементы повышают жаропрочность материала.
  3. Хладостойкие. В составе этих высоколегированных сталей присутствуют хром (19%) и никель (25%). Главным достоинством материала является высокая вязкость и пластичность. Также эта модификация железа располагает высокой стойкостью к коррозии. Хладостойкие металлы сохраняют данные свойства даже при резком понижении температуры. Их главным недостатком является низкая прочность во время работы при комнатной температуре.

Аустенитная высоколегированная сталь является одной из самых дорогих модификаций железа, потому что в них содержится большое количество дорогостоящих материалов: хрома и никеля. Также на ее стоимость влияет количество дополнительных легирующих компонентов, позволяющих создавать железные сплавы с особыми свойствами. Дополнительные элементы легирования подбираются в зависимости от сложности работ, где применяются аустенит.

В аустенитных сталях могут осуществляться следующие разновидности превращений:

  1. Образование феррита при нагреве железного сплава до высоких температур.
  2. При нагреве до температуры 900 °C из аустенита начинают выделяться избыточные карбидные фазы. Во время этого процесса на аустенитной поверхности образуется межкристаллическая коррозия, постепенно разрушающая материал.
  3. Во время охлаждения аустенита до температуры 730 °C происходит эвтектоидный распад. В результате образуется перлит – модификация железных сплавов. Его микроструктура представлена в виде небольших пластин или округлых зерен.
  4. При резком понижении температуры металлического изделия формируется мартенсит – микроструктура, состоящая из пластин игольчатого или реечного вида.

Время, требуемое для превращения аустенитной стали в иные модификации железа, определяется содержанием углерода в твердом растворе и количеством дополнительных легирующих компонентов. Чем ниже эти показатели, тем быстрее охлаждается металлическое изделие.

Методы получения аустенита

Стали аустенитного класса образуются в процессе появления и роста зерен исходной микроструктуры металлического изделия. Формирование аустенита осуществляется на поверхности раздела фаз феррита и карбида. Карбидные частицы постепенно растворяются в твердом растворе аустенита.

Получить аустенит также можно из эвтектоидной модификации железа, состоящей из феррита и цементита. Для этого исходную металлическую заготовку необходимо нагреть до температуры 900 °C. Важно, чтобы в сплаве присутствовала минимальная концентрация углерода, равняющаяся 0,66%. Во время этого процесса феррит превращается в аустенит, а цементит полностью растворяется. В итоге сформируется нержавеющая аустенитная сталь.

Читать еще:  Что такое rgb лента

При производстве металлических заготовок из аустенитных сталей, стабилизированных титаном, необходимо в вакуумно-индукционной печи переплавить металл. Полученный расплав выдерживают в течение длительного периода для его деазотирования. Количество времени, требуемого для этого процесса, зависит от массы исходного изделия. После выдержки в расплавленный аустенит вводится смесь из титана и нитридообразующих химических элементов.

Для получения устойчивой аустенитной структуры в состав исходной модификации железа добавляются хром и никель. При этом важно соблюдать пропорции. Процентное содержание никеля должно составлять не менее 20%, хрома – не более 19%. Эти химические вещества повышают устойчивость аустенита к высоким температурам и большим нагрузкам. Также они увеличивают выделение карбидов. Материал становится коррозионностойким.

При добавлении хрома и никеля в состав железной модификации нужно выдерживать материал в течение более длительного времени. Очень часто в полученный раствор добавляется смесь из молибдена или фосфора. Эти химические вещества увеличивает вязкость и усталостную прочность железного сплава. Для снижения износа полученного аустенита используют дополнительные легирующие материалы и энергоемкие карбиды.

Применение сплавов

Стали аустенитного класса используются при изготовлении устройств, работающих при высоких температурах, начиная от 200 °C: парогенераторов, роторов, турбин и сварочных механизмов. Недостатком использования аустенита в этих механизмах является низкая прочность металла. При длительном контакте железных сплавов различными гидроокисями могут образоваться дополнительные трещины, что приведет к поломке рабочих поверхностей устройств. Устранить этот недостаток можно при добавлении в раствор железа дополнительных химических элементов: ванадия и ниобия. Они формируют карбидную фазу, увеличивающих показатели прочности стали.

Нержавеющие аустенитные стали используются в механизмах, функционирующих в сложных условиях и при сильных перепадах температурных показателей. Чаще всего они используются при сварке коррозионностойких труб. Во время этого процесса между крепежными элементами образуется шовное прострaнcтво. При нагревании нержавеющих труб из аустенита до температуры плавления они приобретают монолитную структуру, защищающей металл от процессов окисления и высоких перепадов температур.

Также аустенитные стали обладают высокой устойчивостью к электромагнитным излучениям. Поэтому ее применяют при производстве отдельных деталей для радиоэлектронного оборудования. Аустенит улучшает прочность механизмов радио и не теряет свои свойства при изменениях структуры магнитного поля. По этой причине радиотехническая аппаратура будет легко принимать необходимые сигналы.

Аустенитные сплавы железа нашли широкое применение в производстве механизмов, работающих в водной среде. Нержавеющая сталь устойчива к образованию коррозии. Она используется в качестве защитного материала. При правильном соотношении хрома и никеля аустенит может сформировать тонкий слой, снижающим влияния водной среды на рабочую поверхность металлического приспособления. В результате снижается износ устройства. Но при значительном вымывании никеля материал полностью теряет устойчивость к коррозии.

В современных корпусах турбин также используются аустенитные стали с большим пределом текучести. Они позволяют избежать коробления данного устройства и улучшить показатели его прочности. Благодаря наличию крупнозернистой структуры, при помощи аустенита с высоким пределом текучести также можно укрепить конструкцию ротора турбины. Недостатком этой технологии является значительное повышение стоимости механизмов из-за использования большого количества дорогой аустенитной стали.

Марки аустенитной стали

Регламент изготовления аустенита определен в ГОСТ 5632-2014. В нем указываются следующие марки сталей аустенитного класса:

Аустенит — это что такое?

Термическая обработка стали – это мощнейший механизм влияния на ее структуру и свойства. Он основывается на видоизменениях кристаллических решеток в зависимости от игры температур. В различных условиях в железоуглеродистом сплаве могут присутствовать феррит, перлит, цементит и аустенит. Последний играет основную роль во всех термических преобразованиях в стали.

Определение

Сталь – это сплав железа и углерода, в котором содержание карбона составляет до 2,14% теоретически, однако технологически применимая содержит его в количестве не более 1,3%. Соответственно, все структуры, которые образовываются в ней под влиянием внешних воздействий, также являются разновидностями сплавов.

Теория представляет их существование в 4 вариациях: твердый раствор проникновения, твердый раствор исключения, механическая смесь зерен или химическое соединение.

Аустенит – это твердый раствор проникновения атома углерода в гранецентрическую кубическую кристаллическую решетку железа, именуемую как γ. Атом карбона внедряется в полость γ-решетки железа. Его размеры превосходят соответствующие поры между атомами Fe, что объясняет ограниченность прохождения их сквозь «стенки» основной структуры. Образуется в процессах температурных превращений феррита и перлита при повышении тепла выше 727˚С.

Диаграмма железоуглеродистых сплавов

График, именуемый диаграммой состояния железо-цементит, построенный экспериментальным путем, представляет собой наглядную демонстрацию всех возможных вариантов преобразований в сталях и чугунах. Конкретные температурные значения для определенного количества углерода в сплаве образуют критические точки, в которых происходят важные структурные изменения в процессах нагревания или охлаждения, они же формируют критические линии.

Линия GSE, которая содержит точки Ac3 и Acm, отображает уровень растворимости карбона при повышении уровня тепла.

Таблица зависимости растворимости углерода в аустените от температуры

Примерная растворимость С в аустените, %

Особенности образования

Аустенит – это структура, которая формируется в процессе нагревания стали. При достижении критической температуры перлит и феррит образуют целостное вещество.

  1. Равномерное, до достижения необходимого значения, непродолжительная выдержка, охлаждение. В зависимости от хаpaктеристик сплава, аустенит может быть как полностью сформирован, так и частично.
  2. Медленное повышение температуры, длительный период поддержания достигнутого уровня теплоты с целью получения чистого аустенита.

Свойства полученного разогретого материала, а также того, который будет иметь место в результате охлаждения. Очень многое зависит от уровня достигнутого тепла. Важно не допустить перегрев или перепал.

Микроструктура и свойства

Каждой из фаз, хаpaктерных для железоуглеродистых сплавов, свойственно собственное строение решеток и зерен. Структура аустенита – пластинчатая, имеющая формы, близкие и к игольчатому виду, и к хлопьевидному. При полном растворении углерода в γ-железе, зерна имеют светлую форму без наличия темных цементитных включений.

Твердость составляет 170-220 НВ. Теплопроводность и электропроводность на порядок ниже, чем у феррита. Магнитные свойства отсутствуют.

Варианты охлаждения и его скорости приводят к образованию различных модификаций «холодного» состояния: мартенсита, бейнита, троостита, сорбита, перлита. Они имеют похожую игольчатую структуру, однако отличаются дисперсностью частиц, размером зерен и цементитных частиц.

Влияние охлаждения на аустенит

Распад аустенита происходит в тех же критических точках. Результативность его зависит от следующих факторов:

  1. Скорость охлаждения. Влияет на хаpaктер углеродных включений, формирования зерен, образования итоговой микроструктуры и ее свойств. Зависит от среды, которая используется в качестве охладителя.
  2. Наличие изотермической составляющей на одном из этапов распада – при понижении до определенного температурного уровня, поддерживается стабильное тепло некоторый период времени, после чего продолжается быстрое охлаждение, или же оно происходит вместе с нагревательным устройством (печью).

Таким образом, выделяют непрерывное и изотермическое превращения аустенита.

Особенности хаpaктера преобразований. Диаграмма

С-образный график, который отображает хаpaктер изменений микроструктуры металла во временном интервале, в зависимости от степени изменения температур – это диаграмма превращения аустенита. Реальное охлаждение непрерывно. Возможны лишь некоторые фазы принудительного удержания тепла. График описывает изотермические условия.

Хаpaктер может быть диффузионный и бездиффузионный.

При стандартных скоростях снижения тепла изменение аустенитного зерна происходит диффузионно. В зоне термодинамической неустойчивости атомы начинают перемещаться между собой. Те, которые не успевают внедриться в решетку железа, формируют цементитные включения. К ним присоединяются соседние частицы карбона, высвободившиеся из своих кристаллов. Цементит формируется на границах распадающихся зерен. Очищенные кристаллы феррита образовывают соответственные пластины. Формируется дисперсная структура – смесь зерен, размер и концентрация которых зависят от стремительности охлаждения и содержания карбона в сплаве. Образуется также перлит и его промежуточные фазы: сорбит, троостит, бейнит.

При значительных скоростях снижения температур распад аустенита не имеет диффузионного хаpaктера. Происходят комплексные искажения кристаллов, внутри которых все атомы одновременно смещаются в плоскости, не меняя расположения. Отсутствие диффузионности способствует зарождению мартенсита.

Влияние закалки на особенности распада аустенита. Мартенсит

Закалка – это вид термической обработки, суть которого заключается в быстром нагревании до высоких температур выше критических точек Ac3 и Acm, после чего следует быстрое охлаждение. Если снижение температуры происходит с помощью воды со скоростью больше 200˚С за секунду, то образуется твердая игольчатая фаза, имеющая название мартенсит.

Он являет собой пересыщенный твердый раствор проникновения карбона в железо с кристаллической решеткой типа α. Вследствие мощных перемещений атомов она искажается и формирует тетрагональную решетку, что и выступает причиной упрочнения. Сформированная структура имеет больший объем. В результате этого кристаллы, ограниченные плоскостью, сжимаются, зарождаются игольчатые пластины.

Читать еще:  Ковка на палисадник фото

Мартенсит – прочный и очень твердый (700-750 НВ). Образуется исключительно в результате высокоскоростной закалки.

Закалка. Диффузионные структуры

Аустенит – это формирование, из которого могут быть искусственно произведены бейнит, троостит, сорбит и перлит. Если охлаждение закалки происходит на меньших скоростях, осуществляются диффузионные превращения, их механизм описан выше.

Троостит – это перлит, для которого хаpaктерна высокая степень дисперсности. Формируется при уменьшении тепла 100˚С за секунду. Большое количество мелких зерен феррита и цементита распределяется по всей плоскости. «Закаленному» свойственен цементит пластинчатой формы, а троостит, полученный в результате последующего отпуска, имеет зернистую визуализацию. Твердость – 600-650 НВ.

Бейнит – это промежуточная фаза, которая являет собой еще более дисперсную смесь кристаллов высокоуглеродистого феррита и цементита. По механическим и технологическим свойствам уступает мартенситу, но превышает троостит. Образуется в температурных интервалах, когда диффузия невозможна, а силы сжатия и перемещения кристаллической структуры для превращения в мартенситную – недостаточно.

Сорбит – крупнодисперсная иглообразная разновидность перлитных фаз при охлаждении со скоростью 10˚С за секунду. Механичесие свойства занимают промежуточное положение между перлитом и трооститом.

Перлит – это совокупность зерен феррита и цементита, которые могут быть зернистой или пластинчатой формы. Формируется в результате плавного распада аустенита со скоростью охлаждения 1˚С за секунду.

Бейтит и троостит – более относятся к закалочным структурам, тогда как сорбит и перлит могут формироваться и при отпуске, отжиге и нормализации, особенности которых определяют форму зерен и их размер.

Влияние отжига на особенности распада аустенита

Пpaктически все виды отжига и нормализации основаны на взаимообратном превращении аустенита. Полный и неполный отжиг применяют к доэвтектоидным сталям. Детали нагревают в печи выше критических точек Ac3 и Ас1 соответственно. Для первого типа хаpaктерно наличие длительного периода выдержки, который обеспечивает полное преобразование: феррит-аустенит и перлит-аустенит. После чего следует медленное охлаждение заготовок в печи. На выходе получают мелкодисперсную смесь феррита и перлита, без внутренних напряжений, пластичную и прочную. Неполный отжиг менее энергоемкий, изменяет только строение перлита, оставляя феррит пpaктически без изменений. Нормализация подразумевает более высокую скорость снижения температур, однако и более крупнозернистую и менее пластичную структуру на выходе. Для стальных сплавов с содержанием углерода от 0,8 до 1,3% при охлаждении в рамках нормализации происходит распад по направлению: аустенит-перлит и аустенит-цементит.

Еще одним видом термической обработки, который основан на структурных превращениях, является гомогенизация. Он применим для крупных деталей. Подразумевает абсолютное достижение аустенитного крупнозернистого состояния при температурах 1000-1200˚С и выдержку в печи в период до 15 часов. Изотермические процессы продолжаются медленным охлаждением, которое способствует выравниванию структур металла.

Изотермический отжиг

Каждый из перечисленных способов влияния на металл для упрощения понимания рассматривается как изотермическое превращение аустенита. Однако каждый из них лишь на определенном этапе имеет хаpaктерные особенности. В реальности же изменения происходят при стабильном снижении тепла, скорость которого определяет результат.

Один из способов, наиболее близкий к идеальным условиям, — изотермический отжиг. Его суть также состоит в нагреве и выдержке до полного распада всех структур в аустенит. Охлаждение реализовывается в несколько этапов, что способствует более медленному, более длительному и более термически стабильному его распаду.

  1. Стремительное понижение температуры до значения на 100˚С ниже точки Ас1.
  2. Принудительное удержание достигнутого значения (помещением в печь) длительное время до полного завершения процессов образования ферритно-перлитных фаз.
  3. Охлаждение на спокойном воздухе.

Метод применим и для легированных сталей, для которых хаpaктерно наличие остаточного аустенита в охлажденном состоянии.

Остаточный аустенит и аустенитные стали

Иногда возможен неполный распад, когда имеет место остаточный аустенит. Это может произойти в следующих ситуациях:

  1. Слишком быстрое охлаждение, когда полный распад не происходит. Является структурной составляющей бейнита или мартенсита.
  2. Сталь высокоуглеродистая или низколегированная, для которой усложнены процессы аустенитных дисперсных превращений. Требует применения особенных способов термообработки, как, к примеру, гомогенизация или изотермический отжиг.

Для высоколегированных – отсутствуют процессы описываемых преобразований. Легирование стали никелем, марганцем, хромом способствует формированию аустенита как основной прочной структуры, которая не требует дополнительных влияний. Аустенитные стали отличаются высокой прочностью, коррозионной стойкостью и жаростойкостью, жаропрочностью и устойчивостью к сложным агрессивным условиям работы.

Аустенит – это структура, без образования которой невозможно ни одно высокотемпературное нагревание стали и которая участвует пpaктически во всех способах ее термической обработки с целью улучшения механических и технологических свойств.

Аустенитная сталь: особенности и хаpaктеристики

Аустенитные стали имеют ряд особых преимуществ и могут применяться в рабочих средах, отличающихся значительной агрессивностью. Без таких сплавов не обойтись в энергетическом машиностроении, на предприятиях нефтяной и химической промышленности.

Аустенитные стали — это стали с высоким уровнем легирования, при кристаллизации образуется однофазная система, хаpaктеризуемая кристаллической гранецентрированной решеткой. Такой тип решеток не меняется даже под воздействием очень низких температур (около 200 градусов Цельсия). В отдельных случаях имеется еще одна фаза (объем в сплаве не превышает 10 процентов). Тогда решетка получится объемноцентрированной.

Описание и хаpaктеристики

Стали разделяют на две группы относительно состава их основы и содержания легирующих элементов, таких как никель и хром:

  • Композиции, в основе которых содержится железо: никель 7%, хром 15%; общее количество добавок — до 55%;
  • Никелевые и железоникелевые композиции. В первой группе содержание никеля начинается от 55% и больше, а во второй — от 65 и больше процентов железа и никеля в соотношении 1:5.

Благодаря никелю можно добиться повышенной пластичности, жаропрочности и технологичности стали, а с помощью хрома — придать требуемую коррозийность и жаростойкость. А добавление других легирующих компонентов позволит получать сплавы с уникальными свойствами. Компоненты подбирают в соответствии со служебным предназначением сплавов.

Для легирования преимущественно используют:

  • Ферритизаторы, стабилизирующие структуру аустенитов: ванадий, вольфрам, титан, кремний, ниобий, молибден.
  • Аустенизаторы, представленные азотом, углеродом и марганцем.

Все перечисленные компоненты расположены не только в избыточных фазах, но и в твердом растворе из стали.

Сплавы, устойчивые к коррозии и перепадам температур

Широкий спектр добавок позволяет создать особые стали, которые будут применены для изготовления компонентов конструкций и будут работать в криогенных, высокотемпературных и коррозионных условиях. Поэтому составы разделяют на три типа:

  • Жаропрочные и жаростойкие.
  • Стойкие к коррозии.
  • Устойчивы к воздействию низких температур.

Жаростойкие сплавы не разрушаются под влиянием химикатов в агрессивных средах, могут использоваться при температуре до +1150 градусов. Из них изготавливают:

  • Элементы газопроводов;
  • Арматуру для печей;
  • Нагревательные компоненты.

Жаропрочные марки на протяжении длительного времени могут оказывать сопротивление нагрузкам в условиях повышенных температур, не теряя высоких механических хаpaктеристик. При легировании используются молибден и вольфрам (на каждое дополнение может отводиться до 7%). Для измельчения зерен в небольших количествах применяется бор.

Аустенитные нержавеющие стали (стойкие к коррозии) хаpaктеризуются незначительным содержанием углерода (не более 0,12%), никеля (8−30%), хрома (до 18%). Проводится термическая обработка (отпуск, закалка, отжиг). Она важна для изделий из нержавейки, ведь дает возможность хорошо держаться в самых разных агрессивных средах — кислотных, газовых, щелочных, жидкометаллических при температуре 20 градусов и выше.

У хладостойких аустенитных композициях содержится 8−25% никеля и 17−25% хрома. Применяют в криогенных агрегатах, но стоимость производства существенно возрастает, потому используются очень ограниченно.

Свойства термической обработки

Жаростойкие и жаропрочные марки могут подвергаться разным типам тепловой обработки, чтобы нарастить полезные свойства и модифицировать уже имеющуюся структуру зерен. Речь идет о числе и принципе распределения дисперсных фаз, величине блоков и собственно зерен и тому подобное.

Отжиг такой стали помогает уменьшить твердость сплава (иногда это важно при эксплуатации), а также устранить излишнюю хрупкость. В процессе обработки металл нагревается до 1200 градусов на протяжении 30−150 минут, потом его необходимо как можно быстрее охладить. Сплавы со значительным количеством легирующих элементов, как правило, охлаждаются в маслах или на открытом воздухе, а более простые — в обычной воде.

Нередко проводится двойная закалка. Сначала выполняют первую нормализацию составов при температуре 1200 градусов, затем следует вторая нормализация при 1100 градусах, что позволяет значительно увеличить пластические и жаропрочные показатели.

Добиться повышения жаропрочности и механической прочности можно в процессе двойной термической обработки (закалка и старение). До эксплуатации проводится искусственное старение всех жаропрочных сплавов (то есть выполняется их дисперсионное твердение).


Снегоуборщик Stiga Snow Power: обзор, отзывы

Снегоуборщик Stiga Snow Power: обзор, отзывы Снегоуборщик Stiga Snow Power: обзор, отзывы Снегоуборщики Stiga. Обзор модельного ряда. Технические хаpaктеристики. Инструкции по эксплуатации Описание...

20 05 2024 10:37:43

Из чего делают гвозди строительные

Из чего делают гвозди строительные Из чего делают гвозди строительные Производство гвоздей как бизнес Гвоздь — это крепёжное изделие, представляющий собой метиз в виде стержня с головкой и...

19 05 2024 1:33:55

Электрическая схема автомобильного компрессора

Электрическая схема автомобильного компрессора Электрическая схема автомобильного компрессора Как отремонтировать автомобильный насос своими руками Автомобильный компрессор является устройством,...

18 05 2024 12:12:27

Снегоуборщик PATRIOT Home Garden PHG 65E: обзор, отзывы

Снегоуборщик PATRIOT Home Garden PHG 65E: обзор, отзывы Снегоуборщик PATRIOT Home Garden PHG 65E: обзор, отзывы Снегоуборщик Patriot Home Garden PHG 51 Patriot Home Garden PHG 51 – американский снегоуборщик...

17 05 2024 22:15:54

Как работает пожарная машина

Как работает пожарная машина Как работает пожарная машина Специальные пожарные и аварийно-спасательные автомобили Пожарные аварийно-спасательные автомобили – наземные трaнcпортные...

16 05 2024 21:45:18

Jackson Custom Shop отмечает 40-летний юбилей линейкой роскошных электрогитар

Jackson Custom Shop отмечает 40-летний юбилей линейкой роскошных электрогитар  Мастерская Jackson Custom Shop отмечает 40-летний юбилей выпуском серии роскошных электрогитар Jackson Custom Shop 40th Anniversary. Вау!...

15 05 2024 3:10:48

Цанговый баллон что это такое

Цанговый баллон что это такое Цанговый баллон что это такое Портативные газовые баллоны и газовые картриджи Одно из наиболее универсальных изделий, которое значительнооблегчило жизнь...

14 05 2024 7:57:37

Какие вещества относят к полимерам

Какие вещества относят к полимерам Какие вещества относят к полимерам Классификации полимеров Полимеры – это вещества, состоящие из макромолекул – гигантских молекул, относительная...

13 05 2024 13:48:28

Виды домкратов для легковых автомобилей

Виды домкратов для легковых автомобилей Виды домкратов для легковых автомобилей Учим матчасть: какие бывают типы домкратов Из этой статьи вы узнаете о существующих типах домкратов и сможете...

12 05 2024 21:34:59

Можно ли паять без припоя

Можно ли паять без припоя Можно ли паять без припоя Как можно припаять без паяльника – принципы холодной пайки и обзор приспособлений для соединения проводов между собой Холодная...

11 05 2024 16:12:13

Как работает плазма резка

Как работает плазма резка Как работает плазма резка Плазменная резка металла: что это такое, принцип и схема работы резака В области металлообработки имеет весомое значение...

10 05 2024 4:51:12

Схема подключения зеркал гранта лифтбек

Схема подключения зеркал гранта лифтбек Схема подключения зеркал гранта лифтбек Установка и подключение подогрева зеркал заднего вида на Лада Гранта Для работы вам необходимо иметь: Комплект...

09 05 2024 17:45:35

Нивелир для чего используется

Нивелир для чего используется Нивелир для чего используется Что такое нивелир: определение, применение, производитель и виды и назначение При проведении строительных и геодезических...

08 05 2024 18:43:25

MeeBlip Cubit Go: компактный MIDI-интерфейс с аппаратной функцией MIDI Thru

MeeBlip Cubit Go: компактный MIDI-интерфейс с аппаратной функцией MIDI Thru  Компактный MIDI-интерфейс MeeBlip Cubit Go оснащается 4 MIDI-выходами, весит 110 грамм, занимает мало места, работает с Windows, macOS, Linux, iOS, Android....

07 05 2024 17:48:44

Accusonus ERA 4 Bundle — новая версия простого и эффективного комплекта плагинов для реставрации звукового сигнала

Accusonus ERA 4 Bundle — новая версия простого и эффективного комплекта плагинов для реставрации звукового сигнала  Греческая компания Accusonus представила ERA 4 Bundle — новую, улучшенную версию набора плагинов для реставрации аудио и исправления проблемных сигналов....

06 05 2024 9:12:51

Яндекс покажет фестиваль «Нашествие» в прямом эфире

Яндекс покажет фестиваль «Нашествие» в прямом эфире  Смотреть "Нашествие" 2019 можно будет на главной странице Яндекс в высоком качестве и с возможностью подписки на выступления....

05 05 2024 4:23:18

Редуктор цилиндрический с вертикальными валами

Редуктор цилиндрический с вертикальными валами Редуктор цилиндрический с вертикальными валами Горизонтальные и вертикальные редукторы Современная промышленность использует множество разновидностей...

04 05 2024 7:29:12

Как обозначить сварку на чертеже

Как обозначить сварку на чертеже Как обозначить сварку на чертеже Читаем обозначения сварных швов на чертежах Современные виды сварки открывают множество возможностей перед мастером,...

03 05 2024 5:28:56

Ремонт отверстий в металле

Ремонт отверстий в металле Ремонт отверстий в металле Ремонт и восстановление отверстий Восстановление изношенных отверстий и посадочных мест методом расточки и наплавки Сервисные...

02 05 2024 6:38:58

NAMM 2020: Roland GO:LIVECAST — портативная студия для стриминга и записи подкастов на смартфоне

Портативная студия для стриминга и записи подкастов Roland GO:LIVECAST позволяет вести трaнcляции со смартфона без компьютера. Мастхэв для подкастеров!...

01 05 2024 9:34:16

В какую сторону должна крутится бетономешалка

В какую сторону должна крутится бетономешалка В какую сторону должна крутится бетономешалка В какую сторону должна вращаться бетономешалка Бетономешалка, или бетоносмеситель – это специализированная...

30 04 2024 20:26:33

Сорвал грани болта как открутить

Сорвал грани болта как открутить Сорвал грани болта как открутить Как открутить болт или гайку с сорванными гранями При проведении ремонта неизбежны сюрпризы. Оборудование может...

29 04 2024 4:10:49

УТЕЧКА: новый синтезатор Moog Subsequent 25 заметили в польском каталоге музыкальных инструментов

УТЕЧКА: новый синтезатор Moog Subsequent 25 заметили в польском каталоге музыкальных инструментов  В Фейсбуке появились фотографии польского каталога, в котором рассказывается про ещё не анонсированный синтезатор Moog Subsequent 25....

28 04 2024 0:46:59

Behringer Eurorack Go: корпус для двух рядов модулей размером 140HP

Behringer Eurorack Go: корпус для двух рядов модулей размером 140HP  Behringer готовится к выходу на рынок модульных инструментов и синтезаторов. Компания представила корпус Eurorack Go и засветила клоны модулей Moog....

27 04 2024 20:19:46

Как просверлить отверстие в каленом металле

Как просверлить отверстие в каленом металле Как просверлить отверстие в каленом металле Как просверлить каленую сталь в домашних условиях Для улучшения основных хаpaктеристик металла зачастую...

26 04 2024 20:36:41

Какие требования техники безопасности необходимо соблюдать

Какие требования техники безопасности необходимо соблюдать Какие требования техники безопасности необходимо соблюдать Какие требования техники безопасности необходимо соблюдать при выполнении свайных работ....

25 04 2024 4:59:31

Как правильно подключить автоматы в частном доме

Как правильно подключить автоматы в частном доме Как правильно подключить автоматы в частном доме Как грамотно подключить автоматы в электрическом щите Автоматические выключатели, известные так же, как...

24 04 2024 20:23:44

Самодельный фрезерный станок с чпу чертежи

Самодельный фрезерный станок с чпу чертежи Самодельный фрезерный станок с чпу чертежи Самодельный фрезерный станок с Ч П У: собираем своими руками Зная о том, что фрезерный станок с Ч П У является...

23 04 2024 9:21:35

Видеоразъемы vga d sub

Видеоразъемы vga d sub Видеоразъемы vga d sub D-sub разъем и что в него можно подключить Рад приветствовать вас, мои друзья. Я решил пополнить коллекцию своих статей, касающихся...

22 04 2024 10:29:47

Программа для рисования электрических схем онлайн

Программа для рисования электрических схем онлайн Программа для рисования электрических схем онлайн Список программ для проектирования электронных схем В данной статье будет представлено 20 лучших...

21 04 2024 8:59:16

Ra на чертеже что значит

Ra на чертеже что значитRa на чертеже что значит Шероховатость поверхности Шероховатость поверхности - совокупность неровностей поверхности с относительно малыми шагами. Для...

20 04 2024 22:37:51

Где стоит редукционный клапан

Где стоит редукционный клапан Где стоит редукционный клапан Редукционный клапан давления масла: устройство, принцип работы и назначение Система смазки в гидроприводных механизмах...

19 04 2024 0:37:30

Регулятор тяги на твердотопливный котел

Регулятор тяги на твердотопливный котел Регулятор тяги на твердотопливный котел Регулятор тяги для твердотопливных котлов В нынешнее время высоких технологий появилось очень много разнообразных...

18 04 2024 19:18:37

Реставрация аудио: 7 самых популярных проблем аудиосигнала

Реставрация аудио: 7 самых популярных проблем аудиосигнала  Популярные изъяны в аудиосигнале, их описание, идентификация и базовые способы устранения с помощью популярного плагина для реставрации аудио iZotope RX6....

17 04 2024 22:41:49

Схема смазки станка 16к20

Схема смазки станка 16к20 Схема смазки станка 16к20 Эксплуатация резьбонарезных станков Длительно сохранить первоначальную точность станка, предотвратить преждевременный износ или...

16 04 2024 21:46:29

В апреле покупатели Plugin Boutique могут бесплатно скачать сэмплер Accusonus Regroover

В апреле покупатели Plugin Boutique могут бесплатно скачать сэмплер Accusonus Regroover  До конца апреля каждый покупатель магазина Plugin Boutique в подарок получит продвинутый сэмплер Accusonus Regroover. Бесплатно его дают за любые покупки....

15 04 2024 21:40:13

Как ноутбук подключить к домашнему кинотеатру

Как ноутбук подключить к домашнему кинотеатру Как ноутбук подключить к домашнему кинотеатру Подключение домашнего кинотеатра к ноутбуку Современные портативные персональные компьютеры выступают не...

14 04 2024 22:52:58

Как подключить двойной выключатель фото

Как подключить двойной выключатель фото Как подключить двойной выключатель фото Подключение двухклавишного выключателя — схема и все нюансы подключения Независимо от того, насколько каждый из...

13 04 2024 23:37:31

Как найти фазу и ноль без индикатора

Как найти фазу и ноль без индикатора Как найти фазу и ноль без индикатора Как определить фазу и ноль — обзор различных способов + пошаговые инструкции При ремонте электрической проводки, или...

12 04 2024 18:41:32

Как правильно точить ножовку по дереву видео

Как правильно точить ножовку по дереву видео Как правильно точить ножовку по дереву видео Как наточить ножовку по дереву правильно Несмотря на разнообразие электроинструмента для обработки дерева,...

11 04 2024 0:42:37

Как правильно подключить цифровой ресивер к телевизору

Как правильно подключить цифровой ресивер к телевизору Как правильно подключить цифровой ресивер к телевизору Как подключить цифровую приставку к домашнему телевизору Цифровые ретрaнcляторы телесигнала...

10 04 2024 4:30:28

Klark Teknik Mic Booster CT 1: один из самых доступных линейных микрофонных предусилителей

Klark Teknik Mic Booster CT 1: один из самых доступных линейных микрофонных предусилителей  Дочка Behringer выпустила доступный и качественный микрофонный предусилитель Klark Teknik Mic Booster CT 1. Стоит всего $29, подключается прямо в цепь....

09 04 2024 22:22:25

Как подключить интернетовский кабель

Как подключить интернетовский кабель Как подключить интернетовский кабель Подключение интернет розетки RJ-45 и обжим коннектора Во многих семьях подключается к интернету несколько устройств:...

08 04 2024 13:13:50

Схема микро юсб разъема

Схема микро юсб разъема Схема микро юсб разъема Распиновка usb портов и распайка micro USB: схема, цвета проводов В настоящее время все мобильные устройства и настольные...

07 04 2024 18:14:54

Зачем нужен полевой транзистор

Зачем нужен полевой транзистор Зачем нужен полевой транзистор Устройство и принцип действия полевых транзисторов с изолированным затвором Классификация полевых транзисторов Лекция 12....

06 04 2024 8:32:16

Малка угломер как пользоваться

Малка угломер как пользоваться Малка угломер как пользоваться Малка: незаменимый помощник в строительстве При выполнении строительных или столярных работ часто возникает потребность в...

05 04 2024 13:43:48

Как запаять металлическую трубку

Как запаять металлическую трубку Как запаять металлическую трубку Как паять стальные детали Нередко возникает надобность скрепить стальные детали без сверлений, и без сварки. Выручит...

04 04 2024 0:14:32

Для чего нужен импульсный паяльник

Для чего нужен импульсный паяльник Для чего нужен импульсный паяльник Полезный инструмент - паяльник импульсный В нашей статье мы расскажем о том, что такое паяльник импульсный. Этот...

03 04 2024 17:23:53

Из чего состоит тахеометр

Из чего состоит тахеометр Из чего состоит тахеометр echome.ru Сайт посвященный измерительным приборам… Что такое тахеометр? Современный рынок измерительных инструментов чрезвычайно...

02 04 2024 19:13:24

Сетевые фильтры что это такое

Сетевые фильтры что это такое Сетевые фильтры что это такое Что такое сетевой фильтр и для чего он предназначен? Хотите, чтобы ваша техника работала долго и не вышла из строя из-за...

01 04 2024 16:14:50

Еще:
Музыка -1 :: Музыка -2 :: Музыка -3 :: Музыка -4 :: Музыка -5 :: Музыка -6 :: Музыка -7 :: Музыка -8 :: Музыка -9 :: Музыка -10 :: Музыка -11 ::