Что такое предел текучести и предел прочности > Как создать музыку?
Музыка: как это делается    

Что такое предел текучести и предел прочности

Что такое предел текучести и предел прочности

0a9e6d14

Предел прочности материалов (разрыв металлов) при растяжении и сжатии: что это такое, виды, фото

При строительстве объектов обязательно необходимо использовать расчеты, включающие подробные хаpaктеристики стройматериалов. В обратном случае на опору может быть возложена слишком большая, непосильная нагрузка, из-за чего произойдет разрушения. Сегодня поговорим о пределе прочности материала при разрыве и натяжении, расскажем, что это такое и как работать с этим показанием.

Определение термина

ПП – будем использовать это сокращение, а также можно говорить об официальном сочетании «временное сопротивление» – это максимальная механическая сила, которая может быть применена к объекту до начала его разрушения. В данном случае мы не говорим о химическом воздействии, но подразумеваем, что нагревание, нeблагоприятные климатические условия, определенная среда могут либо улучшать свойства металла (а также дерева, пластмассы), либо ухудшать.

Ни один инженер не использует при проектировании крайние значения, потому что необходимо оставить допустимую погрешность – на окружающие факторы, на длительность эксплуатации. Рассказали, что называется пределом прочности, теперь перейдем к особенностям определения.

Определение термина

Изначально особенных мероприятий не было. Люди брали предмет, использовали его, а как только он ломался, анализировали поломку и снижали нагрузку на аналогичное изделие. Теперь процеДypa гораздо сложнее, однако, до настоящего времени самый объективный способ узнать ПП – эмпирический путь, то есть опыты и эксперименты.

Все испытания проходят в специальных условиях с большим количеством точной техники, которая фиксирует состояние, хаpaктеристики подопытного материала. Обычно он закреплен и испытывает различные воздействия – растяжение, сжатие. Их оказывают инструменты с высокой точностью – отмечается каждая тысячная ньютона из прикладываемой силы. Одновременно с этим фиксируется каждая деформация, когда она происходит. Еще один метод не лабораторный, а вычислительный. Но обычно математический анализ используется вместе с испытаниями.

Определение термина

Образец растягивается на испытательной машине. При этом сначала он удлиняется в размере, а поперечное сечение становится уже, а затем образуется шейка – место, где самый тонкий диаметр, именно здесь заготовка разорвется. Это актуально для вязких сплавов, в то время как хрупкие, к ним относится чугун и твердая сталь, растягиваются совсем незначительно без образования шейки. Подробнее посмотрим на видео:

Виды ПП

Временное сопротивление разрыву определяют по различным воздействиям, согласно этому его классифицируют по:

  • сжатию – на образец действуют механические силы давления;
  • изгибу – деталь сгибают в различные стороны;
  • кручению – проверяется пригодность для использования в качестве крутящегося вала;
  • растяжению – подробный пример проверки мы привели выше.

Предел прочности на растяжение стали

Стальные конструкции давно заменили прочие материалы, так как они обладают отличными эксплуатационными хаpaктеристиками – долговечностью, надежностью и безопасностью. В зависимости от применяемой технологии, он подразделяется на марки. От самой обычной с ПП в 300 Мпа, до наиболее твердой с высоким содержанием углерода – 900 Мпа. Это зависит от двух показателей:

  • Какие способы термообработки применялись – отжиг, закалка, криообработка.
  • Какие примеси содержатся в составе. Одни считаются вредными, от них избавляются для чистоты сплава, а вторые добавляют для укрепления.

Предел текучести и временное сопротивление

Новый термин обозначается в технической литературе буквой Т. Показатель актуален исключительно для пластичных материалов и обозначает, как долго может деформироваться образец без увеличения на него внешней нагрузки.

Обычно после преодоления этого порога кристаллическая решетка сильно меняется, перестраивается. Результатом выступают пластические деформации. Они не являются нежелательными, напротив, происходит самоупрочнение металла.

Усталость стали

Второе название – предел выносливости. Его обозначают буквой R. Это аналогичный показатель, то есть он определяет, какая сила может воздействовать на элемент, но не в единичном случае, а в цикле. То есть на подопытный эталон циклично, раз за разом действуют определенные давления. Среднее количество повторений – 10 в седьмой степени. Именно столько раз металл должен без деформаций и потери своих хаpaктеристик выдержать воздействие.

Если проводить эмпирические испытания, то потребуется множество времени – нужно проверить все значения силы, прикладывая ее по множеству циклов. Поэтому обычно коэффициент рассчитывается математически.

Предел пропорциональности

Это показатель, определяющий длительность оказываемых нагрузок к деформации тела. При этом оба значения должны изменяться в разный степени по закону Гука. Простыми словами: чем больше оказывается сжатие (растяжение), тем сильнее деформируется образец.

Значение каждого материала находится между абсолютной и классической упругостью. То есть если изменения обратимы, после того как сила перестала действовать (форма стала прежняя – пример, сжатие пружины), то такие параметры нельзя называть пропорциональными.

Как определяют свойства металлов

Проверяют не только то, что называют пределом прочности, но и остальные хаpaктеристики стали, например, твердость. Испытания проводят следующим образом: в образец вдавливают шарик или конус из алмаза – наиболее прочной породы. Чем крепче материал, тем меньше след остается. Более глубокие, с широким диаметром отпечатки остаются на мягких сплавах. Еще один опыт – на удар. Воздействие оказывается только после заранее сделанного надреза на заготовке. То есть разрушение проверяется для наиболее уязвимого участка.

Механические свойства

Различают 5 хаpaктеристик:

  • Предел прочности стали при растяжении и на разрыв это – временное сопротивление внешним силам, напряжение, возникающее внутри.
  • Пластичность – это возможность деформироваться, менять форму, но сохранять внутреннюю структуру.
  • Твердость – готовность встретиться с более твердым материалом и не получить значительных ущербов.
  • Ударная вязкость – способность сопротивляться ударам.
  • Усталость – длительность сохранения качеств под воздействием цикличных нагрузок.

Классы прочности и их обозначения

Все категории записаны в нормативных документах – ГОСТах, по ним все российские предприниматели изготавливают любой металлопрокат и прочие металлические изделия. Вот соответствие обозначения и параметра в таблице:

МЕХАНИЧЕСКИЕ СВОЙСТВА МЕТАЛЛОВ

Механические свойства хаpaктеризуют способность матери­ала сопротивляться внешним механическим воздействиям. К основным механическим свойствам относятся прочность, пла­стичность, твердость, ударная вязкость и др.

Основные хаpaктеристики механических свойств сплавов цветных металлов:

Для стальных и железобетонных конструкций применяются углеродистые и низколегированные стали повышенной и высокой прочности. Стали для конструкций классифицируются по способу выплавки, технологии раскисления, химическому составу, способу упрочнения, качеству и назначению, а также по прочности.

По способу выплавки стали делятся на мартеновские, кислородно-конверторные и бессемеровские; по технологии раскисления — на спокойные, полуспокойные и кипящие (в том числе закупоренные кипящие); по способу упрочнения — на холоднодеформированные и термически обработанные (термоупрочненные).

Сталь по назначению подразделяется: на сталь общего назначения — углеродистая горячекатаная обыкновенного качества и сталь разных назначений — углеродистая горячекатаная повышенного качества (низколегированная) и высокой прочности.

Установлены следующие классы прочности стали (по значениям временного сопротивления и предела текучести): С 38/23, С 44/30, С 46/34, С 52/40, С 60/45, С 70/60.

Предел пропорциональности σпц — напряжение, при котором отступление от линейной зависимости между напряжениями и удлинениями достигает некоторой устанавливаемой техническими условиями или стандартом величины (например, уменьшения тангенса угла наклона касательной к диаграмме растяжения по отношению к оси деформаций на 20 или 33% своего первоначального значения).

Предел упругости σуп — напряжение, при котором остаточные удлинения достигают некоторой малой величины, устанавливаемой техническими условиями или стандартом (например, 0,001; 0,01% и т. д.). Иногда предел упругости обозначается соответственно допуску σ0,001; σ0,01 и т. д.

Предел текучести σт для материалов, имеющих площадку текучести (малоуглеродистая сталь), определяется как напряжение, соответствующее нижней точке площадки текучести; для материалов, не имеющих площадки текучести, определяется условный предел текучести σ0,2 — напряжение, при котором остаточное удлинение образца достигает 0,2%.

Временное сопротивление (предел прочности) σв — напряжение, равное отношению наибольшей нагрузки, предшествовавшей разрушению образца, к первоначальной площади сечения образца. Временное сопротивление можно отождествлять с пределом прочности только для хрупких материалов, разрушающихся без образования шейки. Для пластичных материалов это хаpaктеристика своеобразной потери устойчивости при растяжении, т. е. хаpaктеристика сопротивления значительным пластическим деформациям.

Относительное удлинение при разрыве δ — отношение (обычно в %) приращения расчетной длины образца после разрыва к ее исходной величине. Для длинного круглого образца (lрасч=10d) – δ10; для короткого образца (lрасч=5d) – δ5.

Относительное сужение при разрыве ψ — отношение уменьшения площади наименьшего поперечного сечения образца (после разрыва) к исходной площади поперечного сечения образца.

Условный предел текучести при изгибе σт.и — нормальное напряжение, вычисленное условно по формулам для упругого изгиба, при котором остаточное удлинение наиболее напряженного крайнего волокна достигает 0,2% или другой величины того же порядка соответственно требованиям технических условий.

Временное сопротивление (предел прочности) при изгибе σв.и — нормальное напряжение, вычисленное условно по формулам для упругого изгиба и соответствующее наибольшей нагрузке, предшествовавшей излому образца.

Условный предел текучести при кручении τ0,2, τт — касательное напряжение, вычисленное условно по формулам для упругого кручения, при котором остаточные деформации удлинения или сдвига по поверхности образца достигают 0,2% или другой величины того же порядка соответственно требованиям технических условий.

Временное сопротивление (предел прочности) при кручении τв — касательное напряжение, вычисленное условно по формулам для упругого кручения и соответствующее наибольшему скручивающему моменту, предшествовавшему разрушению образца.

Твердость по Бринеллю НВ — твердость материала, определяемая путем вдавливания в него стального шарика и вычисляемая как частное от деления нагрузки на поверхность полученного отпечатка. Для некоторых материалов существует приблизительно прямая пропорциональность между твердостью НВ и временным сопротивлением; например, для углеродистых сталей σв ≈ 0,36 НВ.

Твердость по Роквеллу HRC, HRB — твердость материала, определяемая путем вдавливания стального шарика или алмазного конуса стандартных размеров и измеряемая в условных единицах с помощью разных шкал по приращению оставшейся глубины погружения при переходе от малого стандартного груза к большому.

Твердость по Виккерсу HV — твердость материала, определяемая путем вдавливания алмазной четырехгранной пирамиды стандартных размеров и вычисляемая как частное от деления стандартной нагрузки на боковую поверхность полученного отпечатка.

Предел ползучести (условный) — длительно действующее напряжение, при котором скорость или деформация ползучести за определенный промежуток Бремени при данной температуре не превышает величины, установленной техническими условиями.

Предел длительной прочности — напряжение, вызывающее разрушение образца после заданного срока его непрерывного действия при определенной температуре.

Предел выносливости — наибольшее периодически изменяющееся напряжение, которое может выдержать материал без разрушения при большом числе циклов, заданном техническими условиями (например, 10 6 ; 10 7 ; 10 8 ). Обозначается при симметричном цикле σ-1 (изгиб), σ-1p (растяжение-сжатие), τ-1 (кручение), при пульсирующем цикле (напряжения меняются от нуля до максимума) соответственно σ, σ0p и τ.

Читать еще:  Как включить 3х фазный двигатель на 220

Ударная вязкость ak — работа, затраченная на разрушение образца при ударном изгибе, отнесенная к рабочему поперечному сечению образца.

Упругое последействие: прямое — постепенное увеличение деформации после быстрого прекращения роста нагрузки; обратное — сохранение или медленное уменьшение деформации после быстрого снятия нагрузки или остановки разгрузки.

Наклеп — упрочнение металла, происходящее благодаря пластической деформации при процессах холодной обработки (холодной прокатке, вытяжке, волочении).

Старение (механическое) — самопроизвольное длительное изменение механических свойств стали после наклепа, вызванное фазовыми превращениями. Различают естественное старение, протекающее при комнатной температуре, и искусственное старение — при повышенных температурах.

Разрушение стали возможно вязкое (пластичное) — от сдвига, хрупкое — от отрыва. В обоих случаях разрушение состоит в нарушении целостности, в разрыве. Нарушение сплошности может возникнуть при условии накопления энергии, отвечающей величине поверхностной энергии на поверхностях нарушения целостности, и в соответствии с этим расстояние между атомами должно достичь критических величин, при которых происходит нарушение связи между ними.

Работа разрушения — величина всей площади диаграммы растяжения образца в координатах Р-∆l; упругая работа — площадь упругой части той же диаграммы; удельная работа — работа, приходящаяся на единицу объема рабочей части образца и соответствующая площади диаграммы растяжения в координатах σ-ε.

Удельный вес в расчетах принимают равным для стали 7,85, для чугуна 7,2; удельный вес стали с содержанием 0,1% С — 7,06 (в жидком состоянии).

Модуль упругости E стали и другие упругие константы пpaктически не зависят от величины зерна, структуры, соотношений между объемами феррита и перлита, от содержания углерода и других легирующих добавок.

Модуль упругости для прокатной стали, литья, горячекатаной арматуры из сталей марок Ст.5 и Ст.3 Е=2,1·10 6 кГ/см 2 ; для сталей 30ХГ2С и 25Г2С E=2·10 6 кГ/см 2 . Для холоднотянутой круглой и периодического профиля проволоки, а также для холодно-сплющенной арматуры E=1,8·10 6 кГ/см 2 .

Для пучков и прядей высокопрочной проволоки (с параллельным расположением проволок) Е=2·106 кГ/см 2 ; для канатов стальных спиральных и канатов (тросов) с металлическим сердечником Е=1,5·10 4 кГ/см 2 ; для тросов с органическим сердечником E=1,3·10 6 кГ/см 2 .

Для отливок из серого чугуна марок СЧ28-48, СЧ24-44, СЧ21-40 и СЧ18-36 E=1·10 6 кГ/см 2 .

Модуль сдвига для прокатной стали G=8,4·10 6 кГ/см 2 .

Коэффициент Пуассона (коэффициент поперечной деформации) μ=0,3.

Методы определения механических свойств металлов разделяют на:

— статические, когда нагрузка растет медленно и плавно (испытания на растяжение, сжатие, изгиб, кручение, твердость);

— динамические, когда нагрузка растет с большой скоростью (испытания на ударный изгиб);

— циклические, когда нагрузка многократно изменяется по величине и направлению (испытания на усталость).

1. Испытание на растяжение

При испытании на растяжение определяют предел прочности (σв), предел текучести (σт), относительное удлинение (δ) и относительное сужение (ψ). Испытания проводят на разрывных машинах c использованием стандартных образцов с площадью поперечного сечения Fo и рабочей (расчетной) длиной lo. В результате проведения испытаний получают диаграмму растяжения (рис. 1). На оси абсцисс указывается значение деформации, на оси ординат – значение нагрузки, которая прилагается к образцу.

Предел прочности (σв) – это максимальная нагрузка, которую выдерживает материал без разрушения, отнесенная к начальной площади поперечного сечения образца (Pmax/Fo).

188.64.169.166 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Предел прочности

Определённая пороговая величина для конкретного материала, превышение которой приведёт к разрушению объекта под действием механического напряжения. Основные виды пределов прочности: статический, динамический, на сжатие и на растяжение. Например, предел прочности на растяжение — это граничное значение постоянного (статический предел) или переменного (динамический предел) механического напряжения, превышение которого разорвет (или неприемлемо деформирует) изделие. Единица измерения — Паскаль [Па], Н/мм ² = [МПа].

Предел текучести (σт)

Величина механического напряжения, при которой деформация продолжает увеличиваться без увеличения нагрузки; служит для расчётов допустимых напряжений пластичных материалов.

После перехода предела текучести в структуре металла наблюдаются необратимые изменения: кристаллическая решетка перестраивается, появляются значительные пластические деформации. Вместе с тем происходит самоупрочнение металла и после площадки текучести деформация возрастает при увеличении растягивающей силы.

Нередко этот параметр определяют как «напряжение, при котором начинает развиваться пластическая деформация» [1] , таким образом, отождествляя пределы текучести и упругости. Однако следует понимать, что это два разных параметра. Значения предела текучести превышают предел упругости ориентировочно на 5%.

Предел выносливости или предел усталости (σR)

Способность материала воспринимать нагрузки, вызывающие циклические напряжения. Этот прочностной параметр определяют как максимальное напряжение в цикле, при котором не происходит усталостного разрушения изделия после неопределенно большого количества циклических нагружений (базовое число циклов для стали Nb = 10 7 ). Коэффициент R (σR) принимается равным коэффициенту асимметрии цикла. Поэтому предел выносливости материала в случае симметричных циклов нагружения обозначают как σ-1, а в случае пульсационных — как σ.

Отметим, что усталостные испытания изделий очень продолжительны и трудоёмки, они включают анализ больших объёмов экспериментальных данных при произвольном количестве циклов и существенном разбросе значений. Поэтому чаще всего используют специальные эмпирические формулы, связывающие предел выносливости с другими прочностными параметрами материала. Наиболее удобным параметром при этом считается предел прочности.

Для сталей предел выносливости при изгибе как правило составляет половину от предела прочности: Для высокопрочных сталей можно принять:

Для обычных сталей при кручении в условиях циклически изменяющихся напряжений можно принять:

Приведённые выше соотношения стоит применять осмотрительно, потому что они получены при конкретных режимах нагружения, т.е. при изгибе и при кручении. Однако, при испытании на растяжение-сжатие предел выносливости становится примерно на 10—20% меньше, чем при изгибе.

Предел пропорциональности (σ)

Максимальная величина напряжения для конкретного материала, при которой ещё действует закон Гука, т.е. деформация тела прямо пропорционально зависит от прикладываемой нагрузки (силы). Обратите внимание, что для множества материалов достижение (но не превышение!) предела упругости приводит к обратимым (упругим) деформациям, которые, впрочем, уже не прямо пропорциональны напряжениям. При этом такие деформации могут несколько «запаздывать» относительно роста или снижения нагрузки.

Диаграмма деформации металлического образца при растяжении в координатах удлинение (Є) — напряжение (σ).

Предел текучести стали

Разные материалы по-разному реагируют на приложенную к ним внешнюю силу, вызывающую изменение их формы и линейных размеров. Такое изменение называют пластической деформация. Если тело после прекращения воздействия самостоятельно восстанавливает первоначальную форму и линейные размеры — такая деформация называется упругой. Упругость, вязкость, прочность и твердость являются основными механическими хаpaктеристиками твердых и аморфных тел и обуславливают изменения, происходящие с физическим телом при деформации под действием внешнего усилия и ее предельном случае — разрушении. Предел текучести материала — это значение напряжения (или силы на единицу площади сечения), при котором начинается пластическая деформация.

Текучесть металла

Знание механических свойств материала чрезвычайно важно для конструктора, который использует их в своей работе. Он определяет максимальную нагрузку на ту или иную деталь или конструкцию в целом, при превышении которой начнется пластическая деформация, и конструкция потеряет с вою прочность, форму и может быть разрушена. Разрушение или серьезная деформация строительных конструкций или элементов трaнcпортных систем может привести к масштабным разрушениям, материальным потерям и даже к человеческим жертвам.

Предел текучести — это максимальная нагрузка, которую можно приложить к конструкции без ее деформации и последующего разрушения. Чем выше его значения, тем большие нагрузки конструкция сможет выдержать.

На пpaктике предел текучести металла определяет работоспособность самого материала и изделий, изготовленных из него, под предельными нагрузками. Люди всегда прогнозировали предельные нагрузки, которые могут выдержать возводимые ими строения или создаваемые механизмы. На ранних этапах развития индустрии это определялось опытным путем, и лишь в XIX веке было положено начало созданию теории сопротивления материалов. Вопрос надежности решался созданием многократного запаса по прочности, что вело к утяжелению и удорожанию конструкций. Сегодня необязательно создавать макет изделия определенного масштаба или в натуральную величину и проводить на нем опыты по разрушению под нагрузкой — компьютерные программы семейства CAE (инженерных расчетов) могут с точностью рассчитать прочностные параметры готового изделия и предсказать предельные значения нагрузок.

Величина предела текучести материала

С развитием атомной физики в XX веке появилась возможность рассчитать значение параметра теоретическим путем. Эту работы первым проделал Яков Френкель в 1924 году. Исходя из прочности межатомных связей, он путем сложных для того времени вычислений определил величину напряжения, достаточного для начала пластической деформации тел простой формы. Величина предела текучести материала будет равна

ττ=G/2π. , где G — модуль сдвига, как раз и определяющий устойчивость связей между атомами.

Расчет величины предела текучести

Гениальное допущение, сделанное Френкелем при расчетах, заключалось в том, что процесс изменения формы материала рассматривался как приводимый в действие напряжениями сдвига. Для начала пластической деформации полагалось достаточным, чтобы одна половина тела сдвинулась относительно другой до такой степени, чтобы не смогла вернуться в начальное положение под действием сил упругости.

График физического предела текучести

Френкель предположил, что испытываемый в мысленном эксперименте материал имеет кристаллическое или поликристаллическое строение, свойственно для большей части металлов, керамики и многих полимеров. Такое строение предполагает наличие прострaнcтвенной решетки, в узлах которой в строго определенном порядке расположены атомы. Конфигурация этой решетки строго индивидуальны для каждого вещества, индивидуальны и межатомные расстояния и связывающие эти атомы силы. Таким образом, чтобы вызвать пластическую деформацию сдвига, потребуется разорвать все межатомные связи, проходящие через условную плоскость, разделяющую половины тела.

При некотором значении напряжения, равному пределу текучести, связи между атомами из разных половин тела разорвутся, и рады атомов сместятся друг относительно друга на одно межатомное расстояние без возможности вернуться в исходное положение. При продолжении воздействия такой микросдвиг будет продолжаться, пока все атомы одной половины тела не потеряют контакт с атомами другой половины

В макромире это вызовет пластическую деформацию, изменит форму тела и при продолжении воздействия приведет к его разрушению. На пpaктике линия начала разрушений проходит не посередине физического тела, а находится в местах расположения неоднородностей материала.

Физический предел текучести

В теории прочности для каждого материала существует несколько значений этой важной хаpaктеристики. Физический предел текучести соответствует значению напряжения, при котором, не смотря на деформацию, удельная нагрузка не меняется вовсе или меняется несущественно. Иными словами, это значение напряжения, при котором физическое тело деформируется, «течет», без увеличения прилагаемого к образцу усилия

Условный предел текучести

Большое число металлов и сплавов при испытаниях на разрыв демонстрируют диаграмму текучести с отсутствующей или слабо выраженной «площадкой текучести». Для таких материалов говорят о условном пределе текучести. Его тpaктуют как напряжение, при котором происходит деформация в переделах 0,2%.

Читать еще:  Как разобрать утюг bork titanium

Условный предел текучести

К таким материалам относятся легированные и высокоуглеродистые стальные сплавы, бронза, дюралюминий и многие другие. Чем более пластичным является материал, тем выше для него показатель остаточных деформаций. Примером пластичных материалов могут служить медь, латунь, чистый алюминий и большинство низкоуглеродистых стальных сплавов.

Предел текучести стали

Сталь, как самый популярный массовый конструкционный материал, находится под особо пристальным вниманием специалистов по расчету прочности конструкций и предельно допустимых нагрузок на них.

Стальные сооружения в ходе их эксплуатации подвергаются большим по величине и сложным по форме комбинированным нагрузкам на растяжение, сжатие, изгиб и сдвиг. Нагрузки могут быть динамическими, статическими и периодическими. Несмотря на сложнейшие условия использования, конструктор должен обеспечить у проектируемых им конструкций и механизмов долговечность, безотказность и высокую степень безопасности как для персонала, таки для окружающего населения.

Предел текучести стали

Поэтому к стали и предъявляются повышенные требования по механическим свойствам. С точки зрения экономической эффективности, предприятие стремится снизить сечение и другие размеры производимой им продукции, чтобы снизить материалоемкость и вес и повысить, таким образом, эксплуатационные хаpaктеристики. На пpaктике это требование должно быть сбалансировано с требования ми по безопасности и надежности, зафиксированными в стандартах и технических условиях.

Предел текучести для стали является ключевым параметрам в этих расчетах, поскольку он хаpaктеризует способность конструкции выдерживать напряжения без необратимых деформаций и разрушения.

Влияние содержание углерода на свойства сталей

Согласно физико-химическому принципу аддитивности, изменение физических свойств материалов определяется процентным содержанием углерода. Повышение его доли до 1,2% дает возможности увеличить прочность, твердость, предел текучести и пороговую хладоемкость сплава. Дальнейшее повышение доли углерода приводит к заметному снижению таких технических показателей, как способность к свариваемости и предельная деформация при штамповочных работах. Стали с низким содержанием углерода демонстрируют наилучшую свариваемость.

Азот и кислород в сплаве

Эти неметаллы из начала таблицы Менделеева являются вредными примесями и снижают механические и физические хаpaктеристики стали, такие, например, как порог вязкости, пластичность и хрупкость. Если кислород содержится в количестве свыше 0,03%- это ведет к ускорению старения сплава, а азот увеличивает ломкость материала. С другой стороны, содержание азота повышает прочность, снижая предел текучести.

Микроструктура сплава, в составе которого присутствуют азот и кислород

Добавки марганца и кремния

Легирующая добавка в виде марганца применяется для раскисления сплава и компенсации отрицательного влияния вредных серосодержащих примесей. Ввиду своей близости по свойствам к железу существенного самостоятельного влияния на свойства сплава марганец не оказывает. Типовое содержание марганца – около 0,8%.

Кремний оказывает похожее воздействие, его добавляют в процессе раскисления в объемной доле, не превышающей 0,4%. Поскольку кремний существенно ухудшает такой технический показатель, как свариваемость стали. Для конструкционных сталей, предназначенных для соединения сваркой, его доля не должна превышать 0,25%. На свойства стальных сплавов кремний влияния не оказывает.

Примеси серы и фосфора

Сера является исключительно вредной примесью и отрицательно воздействует на многие физические свойства и технические хаpaктеристики.

Предельно допустимое содержание этого элемента в виде хрупких сульфитов– 0,06%

Сера ухудшает пластичность, предел текучести, ударную вязкость, износостойкость и коррозионную стойкость материалов.

Фосфор оказывает двоякое воздействие на физико-механические свойства сталей. С одной стороны, с повышением его содержания повышается предел текучести, однако с другой стороны, одновременно понижаются вязкость и текучесть. Обычно содержание фосфора находится в пределах от 0,025 до 0,044%. Особенно сильное отрицательное влияние фосфор оказывает при одновременном повышении объемных долей углерода.

Легирующие добавки в составе сплавов

Легирующими добавками называют вещества, намеренно введенные в состав сплав для целенаправленного изменения его свойств до нужных показателей. Такие сплавы называют легированными сталями. Лучших показателей можно добиться, добавляя одновременно несколько присадок в определенных пропорциях.

Влияние легирующих элементов на свойства стали

Распространенными присадками являются никель, ванадий, хром, молибден и другие. С помощью легирующих присадок улучшают значение предела текучести, прочности, вязкости, коррозионной стойкости и многих других физико-механических и химических параметров и свойств.

Текучесть расплава металла

Текучестью расплава металла называют его свойство полностью заполнять литейную форму, проникая в малейшие полости и детали рельефа. От этого зависит точность отливки и качество ее поверхности.

Жидкий металл для процессоров

Свойство можно усилить, если поместить расплав под избыточное давление. Это физическое явление используется в установках литья под давлением. Такой метод позволяет существенно повысить производительность процесса литья, улучшить качество поверхности и однородность отливок.

Испытание образца для определения предела текучести

Чтобы провести стандартные испытания, используют цилиндрический образец диаметром 20 мм и высотой 10 мм, закрепляют его в испытательной установке и подвергают растягиванию. Расстояние между нанесенными на боковой поверхности образца метками называют расчетной длиной. В ходе измерений фиксируют зависимость относительного удлинения образца от величины растягивающего усилия.

Зависимость отображают в виде диаграммы условного растяжения. На первом этапе эксперимента рост силы вызывает пропорциональное увеличение длины образца. По достижении предела пропорциональности диаграмма из линейной превращается в криволинейную, теряется линейная зависимость между силой и удлинением. На этом участке диаграммы образец при снятии усилия еще может вернуться к исходным форме и габаритам.

Для большинства материалов значения предела пропорциональности и предела текучести настолько близки, что в пpaктических применениях разницу между ними не учитывают.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Определение предела текучести стали

Современное производство нуждается в большом количестве прочных стальных изделий. При строительстве мостов, домов, сложных конструкций используют различные стали. Одним из главнейших вопросов является расчет прочности металла и значения величины напряжения стальной арматуры. Чтобы конструкции служили долго и были безопасны необходимо точно знать предел текучести стального материала, который подвергается основной нагрузке.

Основное определение

В процессе использования на любое сооружение приходятся разные нагрузки в виде сжатий, растяжений или ударов. Они могут действовать как обособленно, так и совместно.

Современные конструкторы стремятся уменьшить массу стальных деталей для экономии материала, но при этом не допустить критичного снижения несущей способности всей конструкции. Происходит это засчет уменьшения сечения стальных арматур.

В зависимости от назначения объектов, могут меняться некоторые требования к стали, но имеется перечень стандартных и важных показателей. Их величины рассчитывают на этапе проектирования деталей и узлов будущего сооружения. Заготовка должна обладать высокой прочностью при соответствующей пластичности.

В первую очередь при расчетах прочности изделия из стали обращают внимание на предел текучести. Это значение хаpaктеризующее поведение деталей при воздействиях на них.

Предел текучести материала — это величина критического напряжения, при которой материал продолжает самостоятельную деформацию без увеличения нагрузки. Эта хаpaктеристика измеряется в Паскалях и позволяет рассчитывать максимально возможное напряжение для пластичной стали.

После прохождения этого предела в материале происходят невосстановимые процессы искажения кристаллической решетки. При последующем увеличении силы воздействия на заготовку и преодолении площадки текучести, деформация увеличивается.

Предел текучести иногда путают с пределом упругости. Это похожие понятия, но предел упругости — это величина максимального сопротивления металла и она чуть ниже предела текучести.

Величина текучести примерно на пять процентов превышает предел упругости.

Состав стальных сплавов

Свойства металла зависят от сформированной кристаллической решетки, которая, в свою очередь, определяется содержанием углерода. Зависимость типов решетки от количества углерода хорошо прослеживается на структурной диаграмме. Если, например, в решетке стали насчитывается до 0.06% углерода, то это классический феррит, который имеет зернистую структуру. Такой материал непрочный, но текучий и имеет большой предел ударной вязкости.

По структуре стали делятся на:

  • ферритную;
  • перлитно-ферритовую;
  • цементитно-ферритную;
  • цементитно-перлитовую;
  • перлитную.

Добавки углерода и прочность

Закон аддитивности подтверждается процентными изменениями цементита и феррита в стали. Если количество углеродной добавки составляет около 1,2%, то предел текучести стального материала увеличивается и повышается твердость, прочность и температуростойкость. При последующем увеличении содержания углерода технические параметры ухудшаются. Сталь плохо сваривается и неохотно поддается штамповке. Самым лучшим образом при сварке ведут себя сплавы с небольшим содержанием углерода.

Марганец и кремний

В виде добавки, чтобы увеличить степень раскисления, дополнительно добавляют марганец. Кроме того, этот элемент уменьшает вредное воздействие серы. Содержание марганца обычно не более 0.8% и он не влияет на технологические свойства сплава. Присутствует как твердый компонент.

Кремний тоже особо не влияет на хаpaктеристики металла. Он необходим для увеличения качества сварки деталей. Содержание этого элемента не превышает 0.38% и он добавляется во время процесса раскисления.

Сера и фосфор

Сера содержится в виде хрупких сульфитов. Повышенное количество этого элемента влияет на механические показатели сплава. Чем больше серы, тем хуже пластичность, текучесть и вязкость сплава. Если превышен предел в 0.06%, то изделие сильнее подвержено коррозии и становится способным к сильному истиранию.

Наличие фосфора увеличивает показатель текучести, но при этом уменьшается пластичность и вязкость. В общем, завышенное содержание фосфора значительно ухудшает качество металла. Особенно вредно сказывается на хаpaктеристиках совместное высокое содержание фосфора и углерода. Допустимыми пределами содержания фосфора считаются значения от 0.025 до 0.044%.

Азот и кислород

Это неметаллические примеси, которые понижают механические свойства сплава. Если содержание кислорода больше чем 0.03%, то металл быстрее стареет, падают значения пластичности и вязкости. Азотные добавки увеличивают прочность, но в этом случае предел текучести уменьшается. Увеличенное содержание азота делает сталь ломкой и способствует быстрому старению металлической конструкции.

Поведение легирующих добавок

Для улучшения всех физических показателей стали, в сплав добавляют специальные легирующие элементы. Такими добавками могут быть вольфрам, молибден, никель, хром, титан и ванадий. Совместное добавление в необходимых пропорциях, дает самые приемлемые результаты.

Легирование значительно повышает показатель текучести, ударной вязкости и препятствует деформации и растрескиванию.

Проверка сплава

Перед запуском в производство для изучения свойств металлического сплава, проводят испытания. На образцы металла воздействуют различными нагрузками до полной потери всех свойств.

  • Статистическая нагрузка.
  • Проверка на выносливость и усталость стали.
  • Растягивание элемента.
  • Тестирование на изгиб и кручение.
  • Совместная выносливость на изгиб и растяжение.

Для этих целей применяют специальные станки и создают условия, максимально приближенные к режиму эксплуатации будущей конструкции.

Проведение испытаний

Для проведения испытаний на цилиндрический образец сечением в двадцать миллиметров и расчетной длиной в десять миллиметров применяют нагрузку на растяжение. Сам образец имеет длину более десяти миллиметров, чтобы была возможность надежно его захватить, а на нем отмечена длина в десять миллиметров и именно она называется расчетной. Силу растяжения увеличивают и замеряют растущее удлинение образца. Для наглядности данные наносят на график. Он носит название диаграммы условного растяжения.

Читать еще:  Виды зажимов для троса

При небольшой нагрузке образец удлиняется пропорционально. Когда сила растяжения достаточно увеличится, то будет достигнут предел пропорциональности. После прохождения этого предела начинается непропорциональное удлинение материала при равномерном изменении силы растяжения. Затем достигается предел, после прохождения которого образец не может возвратиться к первоначальной длине. При прохождении этого значения, изменение испытываемой детали происходит без увеличения силы растяжения. Например, для стального прута Ст. 3 эта величина равна 2450 кг на один квадратный сантиметр.

Невыраженная точка текучести

Если при постоянной силе воздействия, материал способен длительное время самостоятельно деформироваться, то его называют идеально пластическим.

При испытаниях часто бывает, что площадка текучести нечетка определена, тогда вводят определение условного предела текучести. Это означает, что сила, действующая на металл, вызвала деформацию или остаточное изменение около 0.2%. Значение остаточного изменения зависит от пластичности металла.

Чем металл пластичнее, тем выше значение остаточной деформации. Типичными сплавами, в которых нечетко выражена такая деформация, являются медь, латунь, алюминий, стали с малым содержанием углерода. Образцы этих сплавов называют уплотняющимися.

Когда металл начинает «течь» то, как демонстрируют опыты и исследования, в нём происходят сильные изменения в кристаллической решетке. На её поверхности появляются линии сдвига и слои кристаллов значительно сдвигаются.

После того как металл самопроизвольно растянулся, он переходит в следующее состояние и опять приобретает способность сопротивления. Затем сплав достигает своего предела прочности и на детали четко проявляется наиболее слабый участок, на котором происходит резкое сужение образца.

Площадь поперечного сечения становится меньше и в этом месте происходит разрыв и разрушение. Величина силы растяжения в этот момент падает вместе со значением напряжения и деталь рвётся.

Высокопрочные сплавы выдерживают нагрузку до 17500 килограмм на сантиметр квадратный. Предел прочности стали СТ.3 находится в пределах 4−5 тыс. килограммов на сантиметр квадратный.

Хаpaктеристика пластичности

Пластичность материала является важным параметром, который должен учитываться при проектировании конструкций. Пластичность определяется двумя показателями:

  • остаточным удлинением;
  • сужением при разрыве.

Остаточное удлинение вычисляют путем замера общей длины детали после того, как она разорвалась. Она состоит из суммы длин каждой половины образца. Затем в процентах определяют отношение к первоначальной условной длине. Чем прочнее металлический сплав, тем меньше значение относительного удлинения.

Остаточное сужение — это отношение в процентах самого узкого места разрыва к изначальной площади сечения исследуемого прута.

Показатель хрупкости

Самым хрупким металлическим сплавом считается инструментальная сталь и чугун. Хрупкость — это свойство обратное пластичности, и оно несколько условно, поскольку сильно зависит от внешних условий.

Такими условиями могут являться:

  • Температура окружающей среды. Чем ниже температура, тем хрупче становится изделие.
  • Скорость изменения прилагаемого усилия.
  • Влажность окружающей среды и другие параметры.

При изменении внешних условий, один и тот же материал ведет себя по-разному. Если чугунную болванку зажать со всех сторон, то она не разбивается даже при значительных нагрузках. А, например, когда на стальном пруте есть проточки, то деталь становиться очень хрупкой.

Поэтому на пpaктике применяют не понятие предела хрупкости, а определяют состояние образца как хрупкое или довольно пластичное.

Прочность материала

Это механическое свойство заготовки и хаpaктеризуется способностью выдерживать нагрузки полностью не разрушаясь. Для испытываемого образца создают условия наиболее отражающие будущие условия эксплуатации и применяют разнообразные воздействия, постепенно увеличивая нагрузки. Повышение сил воздействия вызывают в образце пластические деформации. У пластичных материалов деформация происходит на одном, ярко выраженном участке, который называется шейка. Хрупкие материалы могут разрушаться на нескольких участках одновременно.

Сталь проходит испытание для точного выяснения различных свойств, чтобы получить ответ о возможности её использования в тех или иных условиях при строительстве и создании сложных конструкций.

Значения текучести различных марок сталей занесены в специальные Стандарты и Технические Условия. Предусмотрено четыре основных класса. Значение текучести изделий первого класса может доходить до 500 кг/см кв., второй класс отвечает требованиям к нагрузке до 3 тыс. кг/см кв., третий — до 4 тыс. кг/см кв. и четвертый класс выдерживает до 6 тыс. кг/см кв.

Понятие и определение предела текучести стали

Изделия из стали востребованы во всех отраслях народного хозяйства. Сталь используется при строительстве домов, мостов и других сооружений. При создании той или иной стальной конструкции учитываются прочностные хаpaктеристики. Одной из них является предел текучести стали. Его определение позволяет увеличить срок службы металлического изделия.

Предел текучести – общее определение

В процессе эксплуатации любое сооружение испытывает нагрузки. Под влиянием атмосферных явлений и других нeблагоприятных факторов стальные конструкции подвергаются комбинированным нагрузкам, к числу которых относятся сжатие, растяжение и удары.

Стальные элементы чаще всего используются при возведении несущих стен, на которые оказывается основная нагрузка. В целях экономии материалов конструкторы стремятся уменьшить диаметр металлической арматуры таким образом, чтобы не допустить снижения несущей способности возводимого сооружения.

Выполнить это условие можно, если на этапе проектирования сооружения произвести правильный расчет прочности и пластичности. В первую очередь при расчетах учитывается предел текучести материала. Данный параметр обозначает напряжение, при котором происходит пластическая деформация детали без увеличения нагрузки.

Предел текучести измеряется в Паскалях. Его определение позволяет рассчитать максимальную нагрузку, которую способна выдержать пластичная сталь. Превышение этого предела вызывает необратимый процесс деформации и разрушения кристаллической решетки.

Какие факторы изменяют предел текучести

Сталь – это сплав железа с углеродом, количество которого определяет свойства металла. Углерод придает сплавам твердость и прочность. Текучесть металла увеличивается, если количество углеродной добавки составляет порядка 1,2%. Такое соотношение позволяет улучшить прочностные хаpaктеристики и повысить устойчивость к высоким температурам. Увеличение содержания углерода приводит к ухудшению технических параметров металла.

Влияние добавок марганца и кремния

Марганец не оказывает влияния на технические свойства сплава. Его добавляют в целях увеличения степени раскисления металла и уменьшения вредного воздействия серы. Обычно его содержание не превышает 0,8%.

Добавка кремния позволяет улучшить качество сварки. Его добавляют в процессе раскисления. А общее содержание данного элемента не превышает 0,38%.

Влияние добавок серы и фосфора

Количество серы, добавляемой в сплав, оказывает влияние на его механические показатели. Увеличенное содержание серы значительно снижает пластичность, вязкость и текучесть металла. Наибольшему истиранию подвержены изделия, содержащие более 0,6% серы.

Добавление фосфора позволяет улучшить показатели текучести. Однако данный элемент способствует снижению пластичности, вязкости и общих хаpaктеристик металла. Допустимым количеством фосфора считается не более 0,025-0,044%.

Влияние добавок азота и кислорода

Азот и кислород относятся к неметаллическим примесям, поэтому их содержание должно быть минимальным. Если металл содержит более 0,03% кислорода, его эксплуатационные хаpaктеристики ухудшаются. Снижение пластичности и вязкости приводит к быстрому износу изделий.

Добавление азота способствует увеличению прочности стали. Но вместе с ней происходит уменьшение предела текучести материала. Если количество азота превышает допустимые значения, металлические конструкции быстро стареют за счет повышенной ломкости.

Влияние легирующих добавок

К легирующим добавкам относятся химические элементы, добавляемые в сплав для придания определенных свойств. К числу легирующих элементов относятся:

  • хром;
  • титан;
  • вольфрам;
  • никель;
  • ванадий;
  • молибден.

Для получения оптимальных результатов их добавляют все вместе, соблюдая определенные пропорции.

Как рассчитывается величина текучести стали

Первые расчеты величины текучести металла были выполнены в 30-х годах прошлого столетия советским ученым Яковом Френкелем. В их основу была положена прочность межатомных связей. Ученому удалось определить, какое напряжение требуется для начала пластической деформации простых тел.

Для расчета данной величины применяется следующая формула:

ττ=G/2π, где величина G является модулем сдвига, определяющим устойчивость межатомных связей.

Как физик-теоретик, Френкель предположил, что материалы состоят из кристаллов, между которыми есть прострaнcтво. Там в определенном порядке расположены атомы. Чтобы достичь пластической деформации, необходимо разорвать межатомные связи в плоскости, разделяющей половинки тела.

Ряды атомов сместятся и половинки тела разорвутся, если на них оказать напряжение, величина которого соответствует определенному значению. Если воздействие будет оказываться и дальше, атомы одной половинки потеряют связь с атомами другой половинки.

Отчасти Френкель оказался прав. Только разрушение произойдет не между половинками тела, то есть посередине, а в том месте, где структура материала неоднородна.

Для каждого вида металла существует несколько значений предела текучести.

Физический предел текучести. Данной величиной обозначают силу напряжения, при которой тело деформируется без изменения прилагаемой нагрузки.

Условный предел текучести. Данный термин применяют к силе напряжения, при которой значение пластической деформации материала составляет около 0,2%.

Как проводятся испытания на производствах

Для проведения испытаний, целью которых является определение текучести материала, берут цилиндрическую заготовку диаметром 20 мм и длиной более 10 мм. На детали делают насечки для получения отрезка длиной 10 мм. Сама заготовка должна быть больше этой длины для того, чтобы ее можно было захватить с двух сторон.

Деталь зажимают в тиски и начинают растягивать, постепенно увеличивая силу растяжения. В процессе произведения нагрузки производят замеры растущего удлинения образца. Полученные данные заносят в график, называемый диаграммой условного растяжения.

Если на заготовку оказывается небольшая нагрузка, она растягивается в обе стороны пропорционально. По мере увеличения силы растяжения достигается предел пропорциональности, после чего деталь растягивается неравномерно. Предел текучести стали определяется в тот момент, когда материал уже не может вернуться к первоначальной длине.

Существуют Государственные Стандарты и Технические Условия, в которых значения предела текучести разделены на четыре класса:

  • 1 класс – до 500 кг/см 2 ;
  • 2 класс – до 3000 кг/см 2 ;
  • 3 класс – до 4000 кг/см 2 ;
  • 4 класс – до 6000 кг/см 2 .

Определение пластичности

Показатель пластичности является не менее важным параметром, который обязательно учитывается в процессе проектирования конструкций. Он определяется двумя параметрами:

  • остаточным удлинением;
  • сужением при разрыве.

Чтобы рассчитать остаточное удлинение, производят замер двух частей детали после разрыва. Длину каждой части складывают, а затем определяют процентное соотношение к первоначальной длине. У более прочных металлических сплавов этот показатель меньше.

Определение хрупкости

Хрупкость – это свойство, противоположное пластичности. Показатель хрупкости зависит от множества факторов. К ним относятся:

  • температура воздуха (при низких температурах хрупкость материала увеличивается);
  • увеличение скорости оказываемой нагрузки;
  • влажность воздуха и пр.

Изменение этих условий приводит к изменению показателя хрупкости. К примеру, чугун – хрупкий материал. Но если чугунную деталь зажать со всех сторон, она способна перенести значительные нагрузки. А стальной прут с насечками становится невероятно хрупким.

Определение прочности

Прочность – это хаpaктеристика металла, определяющая его способность выдерживать нагрузки, не разрушаясь полностью. Для испытаний берут деталь и создают для нее условия, максимально приближенные к эксплуатационным, путем постепенного увеличения нагрузок.

Видео по теме: Испытание стали разных марок


В каких радиодеталях находится золото

В каких радиодеталях находится золото В каких радиодеталях находится золото Золото в радиодеталях. В каких есть золото и как его добыть Чтобы добыть золото, не обязательно выходить из дома....

09 10 2024 11:20:57

Как паять светодиодную ленту между собой

Как паять светодиодную ленту между собой Как паять светодиодную ленту между собой Как правильно паять светодиодную ленту? Светодиодная лента широко применяется в освещении как внутри помещений,...

08 10 2024 2:15:27

NAMM 2019: Electro-Harmonix запустила производство гитарных струн под брендом EHX

NAMM 2019: Electro-Harmonix запустила производство гитарных струн под брендом EHX  Производитель гитарных эффектов Electro-Harmonix начал продавать струны. Гитарные струны Electro-Harmonix выходят на рынок в трех разных вариантах....

07 10 2024 11:43:25

Обновлённая линейка мониторов KRK Rokit G4 поступит на рынок в первом квартале 2019

Обновлённая линейка мониторов KRK Rokit G4 поступит на рынок в первом квартале 2019  Компания KRK анонсировала четвёртое поколение популярной линейки студийных мониторов KRK Rokit G4 с новым дизайном, поворотным твитером и другими фишками....

06 10 2024 0:53:24

Devious Machines Pitch Monster: мощный питч-шифтер с вокодером и тремя движками обработки аудио

Devious Machines Pitch Monster: мощный питч-шифтер с вокодером и тремя движками обработки аудио  Devious Machines Pitch Monster объединяет гармонайзер, питч-шифтер и вокодер с тремя движками синтеза звука для превращения голоса в уникальный инструмент....

05 10 2024 4:19:12

Принцип работы лебедки ручной

Принцип работы лебедки ручной Принцип работы лебедки ручной Лебёдка ручная. Описание, особенности, виды и цены ручных лебёдок Таскатель, нефтянка, тросовый домкрат, лягушка, туапсинка...

04 10 2024 9:24:55

Схема подключения зеркал гранта лифтбек

Схема подключения зеркал гранта лифтбек Схема подключения зеркал гранта лифтбек Установка и подключение подогрева зеркал заднего вида на Лада Гранта Для работы вам необходимо иметь: Комплект...

03 10 2024 12:40:47

К какой воде лучше подключать посудомоечную машину

К какой воде лучше подключать посудомоечную машину К какой воде лучше подключать посудомоечную машину Можно ли подключить посудомойку к горячей воде? Относительно недавно в домах наших соотечественников...

02 10 2024 12:34:53

Как собрать лазерный гравёр

Как собрать лазерный гравёр Как собрать лазерный гравёр Лазерный гравер из старых DVD-Rom Добрый день, со временем у меня накопилось много нерабочих CD или DVD приводов. В интернете...

01 10 2024 5:18:58

NAMM 2020: Neural DSP Quad Cortex моделирует любые усилители через нейронную сеть

NAMM 2020: Neural DSP Quad Cortex моделирует любые усилители через нейронную сеть  Торжество технологий: моделирующий гитарный процессор Neural DSP Quad Cortex эмулирует и моделирует звук с помощью нейронной сети с машинным обучением....

30 09 2024 7:11:53

Лучший мультиметр для домашнего использования

Лучший мультиметр для домашнего использования Лучший мультиметр для домашнего использования Порой случаются ситуации, когда дома или в автомобиле находится неисправность электронного хаpaктера,...

29 09 2024 1:49:59

NAMM 2020: Steinberg AXR4U — профессиональный аудиоинтерфейс с USB 3.1 и записью в 32-бит/384 кГц

NAMM 2020: Steinberg AXR4U — профессиональный аудиоинтерфейс с USB 3.1 и записью в 32-бит/384 кГц  Steinberg представила аудиоинтерфейс Steinberg AXR4U с портом подключения USB 3.1, ворохом разъёмов и записью в 32-бит/192 кГц. Избыток возможностей!...

28 09 2024 10:22:32

Студийные наушники Neumann NDH 20 гарантируют идеальный баланс качества звучания и изоляции

Студийные наушники Neumann NDH 20 гарантируют идеальный баланс качества звучания и изоляции  Neumann представила первые студийные наушники собственного производства. Дебют в лице Neumann NDH 20 получился более чем достойным....

27 09 2024 0:25:53

Ежегодная бесплатная коллекция сэмплов Sonniss GDC 2019 Bundle уже доступна для скачивания

Ежегодная бесплатная коллекция сэмплов Sonniss GDC 2019 Bundle уже доступна для скачивания  Бесплатный набор Sonniss GDC 2019 содержит более 25 ГБ royalty-free звуков, сэмплов и звуковых эффектов. Использовать их можно как угодно....

26 09 2024 15:45:31

Плагин Waves Abbey Road Studio 3 отправит музыкантов за пульт контрольной комнаты знаменитой студии Abbey Road

Плагин Waves Abbey Road Studio 3 отправит музыкантов за пульт контрольной комнаты знаменитой студии Abbey Road  Waves Audio и студия Abbey Road воссоздали в виртуальном виде контрольную комнату знаменитой студии в виде плагина Waves Abbey Road Studio 3....

25 09 2024 22:51:27

Нивелир для чего используется

Нивелир для чего используется Нивелир для чего используется Что такое нивелир: определение, применение, производитель и виды и назначение При проведении строительных и геодезических...

24 09 2024 0:25:13

Расчет конденсатора для однофазного асинхронного двигателя

Расчет конденсатора для однофазного асинхронного двигателя Расчет конденсатора для однофазного асинхронного двигателя Конденсатор для пуска электродвигателя Если требуется присоединить трехфазный электродвигатель...

23 09 2024 10:19:44

Смазка для редуктора снегоуборщика патриот

Смазка для редуктора снегоуборщика патриот Смазка для редуктора снегоуборщика патриот Консервация снегоуборщика на лето Если Вы хотите, что бы у вас не было проблем с запуском, в начале сезона и...

22 09 2024 20:23:27

Примеры металлургии в химии

Примеры металлургии в химии Примеры металлургии в химии Примеры металлургии в химии ХиМуЛя.com Владельцы сайта Галина Пчёлкина Урок №53. Понятие о металлургии. Способы получения...

21 09 2024 22:40:34

IK Multimedia Hammond B-3X — самый правдоподобный и реалистичный виртуальный орган Хаммонда

IK Multimedia Hammond B-3X — самый правдоподобный и реалистичный виртуальный орган Хаммонда  VST орган Хаммонда IK Multimedia Hammond B-3X — первая официальная эмуляция знаменитого инструмента. Hammond USA эмулировала его лично....

20 09 2024 23:43:59

Где применяется высокопрочный чугун

Где применяется высокопрочный чугун Где применяется высокопрочный чугун Ковкий чугун Сплав железа и углерода называют чугуном. Мы же посвятим статью ковкому чугуну. Последний, содержится в...

19 09 2024 9:55:58

TASCAM Model 16: смесь аналогового микшера, цифрового рекордера и аудиоинтерфейса

TASCAM Model 16: смесь аналогового микшера, цифрового рекордера и аудиоинтерфейса  16-кaнaльный аналоговый микшер TASCAM Model 16 записывает аудио на SD-карту или в компьютер. Идеальное устройство для записи репетиций и миниконцертов....

18 09 2024 7:55:35

Кованые решетки на окна фото эскизы

Кованые решетки на окна фото эскизы Кованые решетки на окна фото эскизы Кованые решетки на окна Изящная решетка, украшенная коваными листочками В данном каталоге фотографий мы подобрали ряд...

17 09 2024 21:36:16

Лайфхаки для гитаристов: 15 хитростей, которые пригодятся в повседневной жизни

Лайфхаки для гитаристов: 15 хитростей, которые пригодятся в повседневной жизни Простые и полезные лайфхаки для гитаристов, которые определенно пригодятся каждому любителю шестиструнных инструментов в повседневной жизни....

16 09 2024 14:50:20

Как проверить обмотки асинхронного двигателя

Как проверить обмотки асинхронного двигателя Как проверить обмотки асинхронного двигателя Как проверить состояние обмотки электрического двигателя На первый взгляд обмотка представляет кусок...

15 09 2024 8:10:25

Как заполнять спецификацию к чертежу

Как заполнять спецификацию к чертежу Как заполнять спецификацию к чертежу Сборочный чертеж. Спецификация Сборочный чертеж выполняется на стадии разработки рабочей документации. Сборочный...

14 09 2024 5:15:15

Топ 10 лучших сериалов мира

Топ 10 лучших сериалов мира Топ 10 лучших сериалов мира Топ 10 лучших сериалов мира ТОП 10 лучших сериалов мира, которые стоит хоть раз в жизни посмотреть каждому! 1 «Игра престолов»...

13 09 2024 20:39:26

Как правильно выпаять микросхему паяльником

Как правильно выпаять микросхему паяльником Как правильно выпаять микросхему паяльником Как выпаять микросхему из платы паяльником? Автор: Владимир Васильев · Опубликовано 15 мая 2017 · Обновлено 25...

12 09 2024 21:58:42

Как работать с цифровым мультиметром

Как работать с цифровым мультиметром Как работать с цифровым мультиметром Как использовать мультиметр – инструкция для чайников Знакомимся с тестером Первым делом вкратце расскажем Вам, что...

11 09 2024 10:17:18

Как хранить паяльную лампу

Как хранить паяльную лампу Как хранить паяльную лампу Как хранить паяльную лампу Инструкция по охране труда при работе с паяльной лампой 1. Общие требования охраны труда 1.1....

10 09 2024 18:51:46

Кислота паяльная для чего используется

Кислота паяльная для чего используется Кислота паяльная для чего используется Состав паяльной кислоты и назначение Паяльные работы предусматривают обязательное использование качественного...

09 09 2024 15:17:29

Vga d sub хаpaктеристики

Vga d sub хаpaктеристики Vga d sub хаpaктеристики VGA (D-Sub) — что это за интерфейс, виды, особенности, плюсы и минусы разъема Содержание статьи : Что такое VGA, есть ли разница...

08 09 2024 18:12:17

Kraftwerk победили в 20-летней судебной тяжбе из-за двухсекундного сэмпла

Kraftwerk победили в 20-летней судебной тяжбе из-за двухсекундного сэмпла  Европейский суд признал, что в 1997 году немецкая певица Сабрина Сетлюр использовала отрывок трека Kraftwerk «Metall auf Metall» незаконно....

07 09 2024 19:41:51

Как показать разрыв на чертеже

Как показать разрыв на чертеже Как показать разрыв на чертеже Работа с операциями для вида разрыва Разрыв применяется в ситуациях, когда размер обычного вида превышает размер чертежа, а...

06 09 2024 22:59:10

PreSonus StudioLive ARc: новая серия гибридных микшеров с USB-C и Bluetooth 5.0

PreSonus StudioLive ARc: новая серия гибридных микшеров с USB-C и Bluetooth 5.0  Новые гибридные микшеры PreSonus StudioLive ARc предлагают встроенные эффекты, работу в режиме аудиоинтерфейса и специальный «суперканал» для стереосигнала....

05 09 2024 3:52:17

NAMM 2019: Toontrack отмечает 20-летие анонсом виртуального басиста EZbass и ещё 3 новых продуктов

NAMM 2019: Toontrack отмечает 20-летие анонсом виртуального басиста EZbass и ещё 3 новых продуктов  В 2019 году состоится анонс виртуальной бас-гитарной студии Toontrack EZbass и еще трёх продуктов, значительно расширяющих линейку виртуальных ударных....

04 09 2024 22:45:25

Хроники реверберации: 4 легендарных трека, созданных с помощью эхо-комнаты студии Abbey Road

Хроники реверберации: 4 легендарных трека, созданных с помощью эхо-комнаты студии Abbey Road  Легендарные песни The Beatles и Pink Floyd с хаpaктерным эффектом реверберации, созданным с помощью необычной эхо-комнаты студии Abbey Road....

03 09 2024 9:18:29

Для чего нужен полутерок

Для чего нужен полутерок Для чего нужен полутерок Для чего нужен полутерок Главная Автомобили Марки автомобилей Автомобили Chevrolet Велосипед Велосипед (аксессуары и...

02 09 2024 14:11:57

NAMM 2020: Электрогитары Gibson 2020 года — первый шаг на пути возвращения доверия гитаристов к бренду

NAMM 2020: Электрогитары Gibson 2020 года — первый шаг на пути возвращения доверия гитаристов к бренду  Gibson показала электрогитары 2020 года. Модельный ряд получился обычным: всё привычно, экспериментов пpaктически нет. Есть несколько невероятных красоток!...

01 09 2024 19:34:35

Медь и латунь разница

Медь и латунь разница Медь и латунь разница Отличия меди от латуни и бронзы, их хаpaктеристики Тем, кто собирает и сдаёт металлолом, очень важно уметь отличать медь от латуни....

31 08 2024 18:10:21

Audeze LCD-1 — первые «бюджетные» наушники для сведения музыки от американской компании

Audeze LCD-1 — первые «бюджетные» наушники для сведения музыки от американской компании  Наушники Audeze LCD-1 - первая модель американской компании с относительно доступным ценником. Подходят для сведения и мастеринга музыки....

30 08 2024 16:53:52

Электрический снегоуборщик PATRIOT GARDEN PS 2220Е 426302220: обзор, отзывы

Электрический снегоуборщик PATRIOT GARDEN PS 2220Е 426302220: обзор, отзывы Электрический снегоуборщик PATRIOT GARDEN PS 2220Е 426302220: обзор, отзывы Снегоуборочная машина Patriot Garden PS 2220Е 10490 Модель: Garden PS 2220Е...

29 08 2024 17:58:43

STL Tones Tonality: Andy James Guitar Plug-In Suite — гитарный эмулятор от Энди Джеймса с копиями его оборудования

STL Tones Tonality: Andy James Guitar Plug-In Suite — гитарный эмулятор от Энди Джеймса с копиями его оборудования  Плагин STL Tones Tonality Andy James Guitar Plug-In Suite создан совместно с Энди Джеймсом и предлагает три усилителя и эффекты для тяжелой музыки и шреда....

28 08 2024 14:54:26

Фонд Боба Муга совместно с Native Instruments выпустил библиотеку Modular Icons

Фонд Боба Муга совместно с Native Instruments выпустил библиотеку Modular Icons  Библиотека Native Instruments Modular Icons для NI Kontakt предлагает звучание легендарных модульных синтезаторов и сотни пресетов от известных музыкантов....

27 08 2024 11:58:28

Что такое vga разъем

Что такое vga разъем Что такое vga разъем VGA разъем – последний оплот аналогового сигнала Приветствую своих читателей, и мы продолжаем обсуждать различные типы коннекторов,...

26 08 2024 2:57:22

Подключение асинхронного двигателя через конденсатор

Подключение асинхронного двигателя через конденсатор Подключение асинхронного двигателя через конденсатор Как подключить однофазный двигатель Чаще всего к нашим домам, участкам, гаражам подведена однофазная...

25 08 2024 12:25:59

Чем отличается металл от сплава

Чем отличается металл от сплава Чем отличается металл от сплава ОБЩИЕ СВЕДЕНИЯ О МЕТАЛЛАХ, СПЛАВАХ МЕТАЛЛОВ И ИХ СВОЙСТВАХ Металлами являются вещества, хаpaктеризующиеся в обычных...

24 08 2024 23:39:34

Автоматическое зарядное устройство для аккумулятора шуруповерта схемы

Автоматическое зарядное устройство для аккумулятора шуруповерта схемы Автоматическое зарядное устройство для аккумулятора шуруповерта схемы Изготовление устройства зарядного для шуруповёрта своими руками При использовании...

23 08 2024 3:27:31

Чертежи дымогенератора холодного копчения с размерами

Чертежи дымогенератора холодного копчения с размерами Чертежи дымогенератора холодного копчения с размерами Чертежи дымогенератора Дымогенератор — устройство, хаpaктерное для коптильни холодного копчения. При...

22 08 2024 12:50:26

Шероховатость по контуру обозначение

Шероховатость по контуру обозначение Шероховатость по контуру обозначение Правила нанесения обозначения шероховатости поверхностей на чертежах Обозначения шероховатости поверхностей на...

21 08 2024 6:13:27

Еще:
Музыка -1 :: Музыка -2 :: Музыка -3 :: Музыка -4 :: Музыка -5 :: Музыка -6 :: Музыка -7 :: Музыка -8 :: Музыка -9 :: Музыка -10 :: Музыка -11 ::